homehome Home chatchat Notifications


Body on a chip could usher in a new generation of drug testing

This could greatly reduce the need for animal testing, and usher in a new age of drug development.

Mihai Andrei
March 14, 2018 @ 8:23 pm

share Share

You may have heard of organs on a chip, but have you heard of a body on a chip? MIT researchers have developed a platform that connects engineered tissues from up to 10 organs, accurately replicating the interactions between these organs.

The new platform (depicted above) will allow researchers to use organs on a chip to assess the effects and safety of drugs on different parts of the human body. Image credits: Felice Frankel.
Image: Felice Frankel / MIT.

Testing drugs is no easy task — you not only have to ensure that the drug is working, but you also need to make sure it is safe and not causing any unwanted side effects. Drug testing typically involves animal testing (which can bring significant pain and suffering to the animals), followed by human trials. In order to reduce the time, costs, and suffering brought by testing, researchers have recently developed so-called “organs-on-a-chip.”

Much like the name implies, an organ on a chip is a cell culture chip that simulates the mechanical and physiological characteristics of an organ. However, organs aren’t isolated machines operating in a void — they constantly interact and exchange substances with other tissues and organs, with major consequences for their overall behavior and, consequently, for drug testing.

However, until now, scientists didn’t have the tools to replicate these interactions. This is where the new MIT chip comes in, offering a way to look at the broader picture:

“Some of these effects are really hard to predict from animal models because the situations that lead to them are idiosyncratic,” says Linda Griffith,  a professor of biological engineering and mechanical engineering at MIT, and one of the senior authors of the study. “With our chip, you can distribute a drug and then look for the effects on other tissues, and measure the exposure and how it is metabolized.”

The microfluidic platform connects engineered tissue from up to 10 organs, allowing them to replicate human-organ interactions. Image credits: Felice Frankel / MIT.

It’s not just that this technology could reduce the need for animal testing for the sake of eliminating unnecessary suffering, but it could actually have better results. Animals are imperfect models for human drugs, and this has become more and more apparent in recent trials, Griffith says. Furthermore, due to physiological differences between individual patients (genetics, environment, lifestyle), some problems of these drugs might fly below the radar.

“A lot of the time you don’t see problems with a drug, particularly something that might be widely prescribed, until it goes on the market,” Griffith says.

The researchers created several versions of their chip, linking up to 10 organ types: liver, lung, gut, endometrium, brain, heart, pancreas, kidney, skin, and skeletal muscle. Each “organ” consists of clusters of 1 million to 2 million cells. Of course, this isn’t an exact replica of the entire organ, though it does perform its primary functions. The technology can be scaled and adapted depending on the desired configuration.

Source: MIT.

share Share

This car-sized "millipede" was built like a tank — and had the face to go with it

A Carboniferous beast is showing its face.

9 Environmental Stories That Don't Get as Much Coverage as They Should

From whales to soil microbes, our planet’s living systems are fraying in silence.

Scientists Find CBD in a Common Brazilian Shrub That's Not Cannabis

This wild plant grows across South America and contains CBD.

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

Trees sync their bioelectric signals like they're talking to each other.

The Haast's Eagle: The Largest Known Eagle Hunted Prey Fifteen Times Its Size

The extinct bird was so powerful it could kill a 400-pound animal with its talons.

Miracle surgery: Doctors remove a hard-to-reach spinal tumor through the eye of a patient

For the first time, a deadly spinal tumor has been removed via the eye socket route.

A Lawyer Put a Cartoon Dragon Watermark on Every Page of a Court Filing and The Judge Was Not Amused

A Michigan judge rebukes lawyer for filing documents with cartoon dragon watermark

This Bold New Theory Could Finally Unite Gravity and Quantum Physics

A bold new theory could bridge quantum physics and gravity at last.

America’s Cities Are Quietly Sinking. Here's Why

Land subsidence driven by groundwater overuse is putting millions at risk.

This Priest Was Embalmed With Wood Chips Through His Rectum—And It Worked Surprisingly Well

A strange embalming technique emerges from the annals of history.