homehome Home chatchat Notifications


This is the best photo of Neptune we have so far, and it looks amazing

Color me impressed!

Mihai Andrei
July 19, 2018 @ 1:49 am

share Share

One new image from the European Southern Observatory’s Very Large Telescope (ESO’s VLT) shows just how far our star-gazing ability has come.

Image credits: ESO/P. Weilbacher.

The image was snapped using a new adaptive optics mode called laser tomography — a technique which has shown promise in astronomy as well as in medical research. The technology was made possible by the Multi Unit Spectroscopic Explorer (MUSE), which works with an adaptive optics unit and can correct for the effects of atmospheric turbulence up to one kilometer above the telescope. Using laser tomography, MUSE is able to compensate for almost all of the atmospheric turbulence (which bends incoming light and so distorts images) above the telescope to create much sharper pictures — with the caveat that it does so over a smaller region of the sky than comparable telescopes.

With this approach, astronomers were able to bypass the biggest downside of Earth-based imaging — dealing with the atmospheric disturbances and noise. This is the main reason why we send telescopes like Hubble out in space. However, if we can do that just as well (or almost as well) from Earth, it could be a game changer for future observations.

The image of Neptune on the left was obtained during the testing of the Narrow-Field adaptive optics mode of the MUSE instrument on ESO’s Very Large Telescope. The image on the right is a comparable image taken by the NASA/ESA Hubble Space Telescope. The two images were not taken at the same time so they do not show identical surface features. Image Credits: ESO/P. Weilbacher (AIP)/NASA, ESA, and M.H. Wong and J. Tollefson (UC Berkeley).

Compared to pictures taken from the same telescope without the adaptive optics technique, the difference is even more striking:

These images of the planet Neptune were obtained during the testing of the Narrow-Field adaptive optics mode. The image on the right is without the adaptive optics system in operation and the one on the left after the adaptive optics are switched on. Image Credits: ESO/P. Weilbacher (AIP).

The combination of exquisite image sharpness and the spectroscopic capabilities of MUSE will enable astronomers to study the properties of astronomical objects in much greater detail than they ever could before. Of course, having sharp images of objects allows you to study them in better detail, and gives astronomers a better chance to understand what they look like and how they were formed.

“It will enable astronomers to study in unprecedented detail fascinating objects such as supermassive black holes at the centers of distant galaxies, jets from young stars, globular clusters, supernovae, planets and their satellites in the solar system and much more,” says the ESO.

The ESO will continuously update with more photos as their instruments capture better and better resolution images. We can only imagine what these next images will look like, but for now, color me impressed.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.