homehome Home chatchat Notifications


Bacteria shapeshift in space in response to antibiotics, becoming far more resilient

Not good news for interplanetary travel.

Tibi Puiu
September 13, 2017 @ 11:52 pm

share Share

A rather distressing new study found bacteria cultured in microgravity exposed to common antibiotics responded radically different than here on Earth. Researchers report the bacteria essentially shapeshifted, growing smaller cell volumes and thicker membranes, which made them far more resilient. This raises multiple concerns if humanity is ever to become an interstellar space faring species.

International Space Station

Credit: NASA.

The E. coli bacteria were sent to the International Space Station in 2014 as part of an experimental project headed by CU Boulder’s BioServe Space Technologies. For two days, astronauts on board the station used high-tech incubators and test tubes to initiate the experiment. It was then sent on a commercial SpaceX Dragon spacecraft several months later.

During the experiment, several different concentrations of the antibiotic gentamicin sulfate were thrown at the bacterial cultures. This is a drug that kills them easily on Earth. In the near weightlessness of the ISS, however, these puppies proved far more resilient. 

Tests showed a 13-fold increase in cell numbers and a 73 percent reduction in cell volume size compared to an Earth control group. The paper published in Frontiers in Microbiology went on to trace other startling cellular differentiations. For one, the bacterial cell envelope — comprised of the cell wall and outer membrane — became thicker, offering the bacteria enhanced protection against the antibiotic. Secondly, the space-borne bacteria tended to grow in clumps. This way, the outer bacterial cells acted like a shield for the inner cells, enhancing the survivability of the bacterial culture at large.

In space, there are no gravity-driven forces like buoyancy and sedimentation. The only way drugs can interact with bacteria is through natural diffusion. As such, when the E. coli drastically shrank, the antibiotic-bacteria surface interface drastically decreased as well.

What’s more, the bacteria also grew outer membrane vesicles—small capsules that form outside the cell walls and act as messengers for cells to communicate with each other. When these vesicles pass a certain threshold, the bacterial cells can initiate the infection process.

“We knew bacteria behave differently in space and that it takes higher concentrations of antibiotics to kill them,” said lead autho Luis Zea, a BioServe Research Associate. “What’s new is that we conducted a systematic analysis of the changing physical appearance of the bacteria during the experiments.”

bacteria-iss

After being exposed to antibiotics, E. coli bacterial cells shrank but their walls hardened. Credit: Frontiers in Microbiology.

“Both the increase in cell envelope thickness and in the outer membrane vesicles may be indicative of drug resistance mechanisms being activated in the spaceflight samples,” said Zea. “And this experiment and others like it give us the opportunity to better understand how bacteria become resistant to antibiotics here on Earth.”

If bacteria are indeed harder to crack in outer space, we have a problem. Where humans go, bacteria follow closely — inside our guts even, where they outnumber somatic cells at least ten to one. If astronauts get sick, common antibiotics might not respond. People might die.

Research such as this is thus of the utmost importance for future space travel. By understanding how bacteria react with other organisms and antibiotics, we might one day find the safest course of action to travel to Mars and, hopefully, out of the solar system.

It’s becoming increasingly clear, however, that interplanetary travel will be no piece of cake for humans. We have to worry about radiation, the effects of weightlessness on the body and, not least, extremely resilient bacteria. Many biological processes which are very clear and predictable here on Earth become nebulous in space. It’s really a new frontier in science and we must be up to the challenge.

share Share

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

This nimble dinosaur may have sparked the evolution of one of the deadliest predators on Earth.

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

People still make the funniest memes but AI is catching up fast.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.