homehome Home chatchat Notifications


Australian scientists accidentally engineer one of the world's most thermally stable materials. It doesn't expand even when heated by 1,400 °C

The composite material could prove particularly useful in aerospace where temperatures can spike wildly between space and atmospheric re-entry.

Tibi Puiu
June 11, 2021 @ 8:45 pm

share Share

Credit: Pixabay.

Researchers at the University of New South Wales (UNSW) in Australia were performing battery-related research when they accidentally discovered that a composite material they were working with had a phenomenal ability to resist heat. The composite material did not change in volume at all at temperatures ranging from 4 to 1400 Kelvin (-269 to 1126 °C, -452 to 2059 °F). It may very well be the most thermally stable material in the world.

This wonder material doesn’t break a sweat even at temperatures well past the boiling point of some metals

In elementary physics, we were told that as a material’s temperature increases, so does its volume. This phenomenon is known as thermal expansion. This thermal expansion or contraction is proportional to the change in temperature and is mitigated by thermal expansion coefficients typical of every material. For instance, with the same temperature increase, aluminum expands more than copper, which in turn expands more than gold, which expands more than iron, and so on. In response to temperature, it is normal for material to also suffer alterations in other properties, such as strength, toughness, or elasticity.

However, some materials are thermally stable, meaning they can retain their properties at required temperatures over extended service time. Extended thermal stability at high temperature is particularly desirable in the automotive, marine, and aerospace industries.

One of the most promising thermally stable materials in the world was recently reported by a team of researchers led by Professor Neeraj Sharma of the University of New South Wales. Using state-of-the-art instruments such as the Australian Synchrotron and Australian Centre for Neutron Scattering at the Australian Nuclear Science and Technology Organisation, the researchers showed that a zero thermal expansion material made of scandium, aluminium, tungsten and oxygen did not change in volume even when it was heated by nearly 1,400 °C.

Writing in the journal Chemistry of Materials, the authors reported only minute changes in the bonds and rotations of the atom arrangements in the structure of  Sc1.5 Al0.5W3O12 . The material is easily synthesized and the high availability of alumina and tungsten oxide may enable large-scale manufacture for use in high-precision mechanical instruments, control mechanisms, aerospace components and medical implants.

Remarkably, the composite material’s properties were discovered by accident, while the researchers were busy with other work.

“We were conducting experiments with these materials in association with our batteries-based research, for unrelated purposes, and fortuitously came across this singular property of this particular composition,” said Sharma in a statement.

Next, Sharma and colleagues plan on teasing apart the individual contribution of each ingredient in the composite material.

“Which part’s acting at which temperature, well, that’s the next question,” says Sharma, who adds, “the scandium is rarer and more costly, but we are experimenting with other elements that might be substituted, and the stability retained.”

Correction (June 17, 2021): The original headline stated that the material doesn’t expand ‘up to 1,400 °C’. The material doesn’t expand over a temperature difference of 1,400 °C, however at a nominal temperature of 1,400 °C it may lose it’s properties. We regret the error.

share Share

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)

Newly Found Stick Bug is Heavier Than Any Insect Ever Recorded in Australia

Bigger than a cockroach and lighter than a golf ball, a giant twig emerges from the misty mountains.

Chevy’s New Electric Truck Just Went 1,059 Miles on a Single Charge and Shattered the EV Range Record

No battery swaps, no software tweaks—yet the Silverado EV more than doubled its 493-mile range. How’s this possible?