homehome Home chatchat Notifications


Australian scientists accidentally engineer one of the world's most thermally stable materials. It doesn't expand even when heated by 1,400 °C

The composite material could prove particularly useful in aerospace where temperatures can spike wildly between space and atmospheric re-entry.

Tibi Puiu
June 11, 2021 @ 8:45 pm

share Share

Credit: Pixabay.

Researchers at the University of New South Wales (UNSW) in Australia were performing battery-related research when they accidentally discovered that a composite material they were working with had a phenomenal ability to resist heat. The composite material did not change in volume at all at temperatures ranging from 4 to 1400 Kelvin (-269 to 1126 °C, -452 to 2059 °F). It may very well be the most thermally stable material in the world.

This wonder material doesn’t break a sweat even at temperatures well past the boiling point of some metals

In elementary physics, we were told that as a material’s temperature increases, so does its volume. This phenomenon is known as thermal expansion. This thermal expansion or contraction is proportional to the change in temperature and is mitigated by thermal expansion coefficients typical of every material. For instance, with the same temperature increase, aluminum expands more than copper, which in turn expands more than gold, which expands more than iron, and so on. In response to temperature, it is normal for material to also suffer alterations in other properties, such as strength, toughness, or elasticity.

However, some materials are thermally stable, meaning they can retain their properties at required temperatures over extended service time. Extended thermal stability at high temperature is particularly desirable in the automotive, marine, and aerospace industries.

One of the most promising thermally stable materials in the world was recently reported by a team of researchers led by Professor Neeraj Sharma of the University of New South Wales. Using state-of-the-art instruments such as the Australian Synchrotron and Australian Centre for Neutron Scattering at the Australian Nuclear Science and Technology Organisation, the researchers showed that a zero thermal expansion material made of scandium, aluminium, tungsten and oxygen did not change in volume even when it was heated by nearly 1,400 °C.

Writing in the journal Chemistry of Materials, the authors reported only minute changes in the bonds and rotations of the atom arrangements in the structure of  Sc1.5 Al0.5W3O12 . The material is easily synthesized and the high availability of alumina and tungsten oxide may enable large-scale manufacture for use in high-precision mechanical instruments, control mechanisms, aerospace components and medical implants.

Remarkably, the composite material’s properties were discovered by accident, while the researchers were busy with other work.

“We were conducting experiments with these materials in association with our batteries-based research, for unrelated purposes, and fortuitously came across this singular property of this particular composition,” said Sharma in a statement.

Next, Sharma and colleagues plan on teasing apart the individual contribution of each ingredient in the composite material.

“Which part’s acting at which temperature, well, that’s the next question,” says Sharma, who adds, “the scandium is rarer and more costly, but we are experimenting with other elements that might be substituted, and the stability retained.”

Correction (June 17, 2021): The original headline stated that the material doesn’t expand ‘up to 1,400 °C’. The material doesn’t expand over a temperature difference of 1,400 °C, however at a nominal temperature of 1,400 °C it may lose it’s properties. We regret the error.

share Share

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.