homehome Home chatchat Notifications


Astronomers take best pictures of Kleopatra's 'portrait'

The huge "dog-boned" asteroid hurling through the solar system has now been imaged in unprecedented detail.

Jordan Strickler
September 10, 2021 @ 7:02 pm

share Share

This processed image, based on observations taken in July 2017, shows the two moons of the asteroid Kleopatra (the central white object), AlexHelios and CleoSelene. Credit: ESO.

A team of astronomers has seemingly obtained the best pictures and data to date of the peculiar asteroid, Kleopatra. Using the European Southern Observatory’s Very Large Telescope (VLT), observers from the SETI Institute in Mountain View, California, and the Laboratoire d’Astrophysique de Marseille, France, captured images to help two teams of scientists answer some interesting questions.

“Kleopatra is truly a unique body in our Solar System,” says Franck Marchis, who led a study on the asteroid published in Astronomy & Astrophysics. “Science makes a lot of progress thanks to the study of weird outliers. I think Kleopatra is one of those and understanding this complex, multiple asteroid system can help us learn more about our Solar System.”

The asteroid, which orbits in the central region of the asteroid belt between Mars and Jupiter, was initially discovered on April 10, 1880. However, it wasn’t until just 20 years ago that radar observations revealed it had two lobes which were connected by a thick “neck.” In 2008, Marchis and his colleagues discovered that the asteroid was orbited by two moons, named AlexHelios and CleoSelene, after the Egyptian queen’s children.

Using the telescope’s Spectro-Polarimetric High-contrast Exoplanet Research (SPHERE) to obtain several images from 2017-2019, Marchis’s team determined the celestial body to be 168 miles (270 kilometers) across. That is nearly half the length of the English Channel. The VLT allowed them to produce a 3D rendering of the dog-bone-shaped body where they found one end of the dog-bone shape to be larger than the other.

Eleven images are of the asteroid Kleopatra, viewed at different angles as it rotates. Astronomers have called it a “dog-bone asteroid” ever since radar observations around 20 years ago revealed it has two lobes connected by a thick “neck”. Credit: ESO.

Astronomers were also resolved to find the answer to another curious question. What was up with Kleopatra’s moons? A second study, also published in Astronomy & Astrophysics, used SPHERE observations to find the correct orbits of the moons. Previous studies had estimated their trajectories, however, these new readings surprised the team a bit, showing that the satellites were not where they were previously thought to be. The new data revealed that the positions of the moons’ orbits were actually 35% lower than they formerly thought. 

“This had to be resolved,” said Miroslav Broz of Charles University in Prague, Czech Republic, who led the study. “Because if the moons’ orbits were wrong, everything was wrong, including the mass of Kleopatra.”

Combining the new estimates for volume and mass, the astronomers were able to estimate a new value for the density of Kleopatra. This also ended up being different than expected, when results concluded that the asteroid was less than half the density of iron. The low density, which is believed to have a metallic composition, suggests that the asteroid has a porous structure and could be little more than a “pile of rubble.” These conclusions mean it likely formed when material reaccumulated following a giant impact.

This rubble-pile structure – along with the way it rotates — gives indications as to how its two moons could have developed. The Kelopatra asteroid rotates almost at a critical momentum, the speed above which it would start to fall apart, and even small impacts may kick pebbles off its surface. Marchis and his team believe that those pebbles could subsequently have formed AlexHelios and CleoSelene, meaning that Kleopatra has truly birthed its own moons.

The upcoming (and originally named) Extremely Large Telescope (ELT) promises to hold more surprises for the researchers.

“I can’t wait to point the ELT at Kleopatra, to see if there are more moons and refine their orbits to detect small changes,” exclaimed Marchis.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes