homehome Home chatchat Notifications


Artificial muscle lifts 1,000 times its own weight, brings us closer to humanoid bots

A step closer to forging our new robotic overlords.

Tibi Puiu
September 21, 2017 @ 1:06 pm

share Share

Scientists have come up with an artificial muscle that, in many respects, responds like natural muscle. These artificial muscles could enable humanoid robots to move and act with more grace, possibly mimicking real humans.

The artificial muscle seen here performing biceps motion in order to lift a skeleton's arm to a 90 degree position. Credit: Aslan Miriyev/Columbia Engineering.

The artificial muscle seen here performing biceps motion in order to lift a skeleton’s arm to a 90 degree position. Credit: Aslan Miriyev/Columbia Engineering.

Before robots or androids really permeate society, designers have to make them more human-like. This is not only to make them more familiar or less creepy, but also to improve safety. When working side by side on an assembly line or at home, you really don’t want to injure yourself every time you come across a robot’s metal rods. Ideally, robots that interact often with humans ought to be covered in soft, artificial tissue.

Making more dexterous robots

With this goal in mind, a team led by Aslan Miriyev, a postdoctoral researcher in Columbia University’s Creative Machines Lab, developed a synthetic muscle that pushes, pulls, or twists in response to heat.

Experiments suggest the artificial muscle is capable of lifting 1,000 times its own weight. Even more remarkably, it can expand 15 times more than natural muscle and is also three times stronger.

Beyond robots, the 3-D printed artificial muscle might see a better life augmenting movement for people with disabilities. Since it’s made from biocompatible, relatively inexpensive materials, the artificial muscle could be surgically embedded or used as an exoskeleton prosthesis. No external compressor or high voltage equipment is required, as in previous muscles.

“Our soft functional material may serve as robust soft muscle, possibly revolutionizing the way that soft robotic solutions are engineered today,” said Miriyev. “It can push, pull, bend, twist, and lift weight. It’s the closest artificial material equivalent we have to a natural muscle.

Soft actuator technologies typically use pneumatic or hydraulic inflation to expand elastomer skin with air or liquid. The compressors or pressure-regulating equipment, however, prevents the kind of miniaturization we’d like to see in a humanoid robot that moves gracefully and fluidly like a human would.

To get around bulky actuator equipment, the scientists designed a silicone rubber matrix which expands or contracts as ethanol enters or exits micro-bubbles embedded inside the material. The artificial muscle is actuated with a low-power 8V resistive wire. When heated to 80°C, the artificial muscle could expand to up to 900% its initial size, allowing it to perform motion.

“We’ve been making great strides toward making robots minds, but robot bodies are still primitive,” said Hod Lipson. “This is a big piece of the puzzle and, like biology, the new actuator can be shaped and reshaped a thousand ways. We’ve overcome one of the final barriers to making lifelike robots.”

The team now plans on improving their design. On the drawing board is replacing the embedded wire with conductive materials, accelerating the response time, and increasing the artificial muscle’s shelf life. Ultimately, machine learning algorithms will take control of the muscle’s contractive motion in order to replicate natural movement as closely as possible.

share Share

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

This nimble dinosaur may have sparked the evolution of one of the deadliest predators on Earth.

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

People still make the funniest memes but AI is catching up fast.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.