homehome Home chatchat Notifications


New sugar-based molecule rips drug-resistant viruses to death

It doesn't stop viruses; it destroys them.

Alexandru Micu
February 3, 2020 @ 6:03 pm

share Share

Oh, sweet victory — a team of researchers from the University of Manchester, the University of Geneva (UNIGE), and the Federal Polytechnic School of Lausanne (EPFL) have developed a new virus-killing substance derived from sugar.

Artist’s impression of a virus being attacked by the new molecules.
Image credits EPFL.

Viruses aren’t easy to kill, especially in a way that doesn’t affect our own cells. Most of the drugs and chemicals that can destroy viruses also come with a host of side-effects on human health, as they impact our bodies to a lesser or greater extent. So one of the most usual approaches in dealing with viruses is to not actually kill them but to disrupt their ability to infect cells or multiply.

However, a new paper describes the development of a new sugar-based molecule that will actually destroy such pathogens, but leave our own cells unaffected.

A sticky demise

“We have successfully engineered a new molecule, which is a modified sugar that shows broad-spectrum antiviral properties,” says Samuel Jones and Valeria Cagno, lead researchers on the study.

“As this is a new type of antiviral and one of the first to ever show broad-spectrum efficacy, it has potential to be a game changer in treating viral infections.”

Viricides are substances or compounds that outright kill viruses instead of the traditional approach. The time window between when a traditional antiviral first makes contact with a virus and its death gives the pathogen an opportunity to develop defenses, and this new compound is aimed at combating that exact mechanism. Most importantly, however, is that the sugar-based molecule is effective against multiple types of viruses and completely benign for human cells.

The team started from cyclodextrins, naturally-occurring molecules that are related to glucose. They then engineered these molecules to attract viruses, stick to their membranes, and tear them apart — which effectively destroys the pathogen.

Microscope image of a virus before and after treatment with the molecule.
Image credits EPFL.

The team tested their compound on several types of viruses including herpes, HIV, hepatitis C, Zika and respiratory syncytial virus; it performed very well against all of them, they report. The tests involved both laboratory trials using tissue cultures, as well as live mice. Overall, the viricide was effective and didn’t harm either cultured or live cells and tissues, and the team found that the viruses weren’t able to develop resistance to the compound.

The sugar-based viricide has the most promise in use against viruses that have evolved resistance to other treatments, the team explains. It has already been patented and the team is currently setting up a new company to market it, with the end goal of developing ointments, nasal sprays, and other treatment options based on the molecule.

The paper “Modified cyclodextrins as broad-spectrum antivirals” has been published in the journal Science Advances.

share Share

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

Ice isn't as passive as it looks.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

Pluto's Moons and Everything You Didn't Know You Want to Know About Them

Let's get acquainted with the lesser known but still very interesting moons of Pluto.

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

These robots are taking over repetitive jobs and reducing workload as Japan combats a worker crisis.

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

We can't confirm it yet, but it's as close as it gets.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.