homehome Home chatchat Notifications


New, ultrathin solar cell doubles the current efficiency record by reaching almost 50%

It's a huge step up, but currently quite expensive to produce.

Alexandru Micu
April 15, 2020 @ 7:55 pm

share Share

Researchers at the National Renewable Energy Laboratory (NREL) have created a record-shattering new solar cell. The device can convert sunlight to energy at nearly 50% efficiency, much better than present alternatives.

NREL scientists John Geisz (left) and Ryan France testing their prototype panel.
Image credits Dennis Schroeder / NREL.

Solar cells today typically run with between 15% and 23% efficiency, meaning they convert roughly 1/6th to 1/4th of incoming energy (in the form of sunlight) to electricity. But a new, “six-junction solar cell” designed at NREL boasts an efficiency of almost 50%, a huge increase.

More bang for your sun

“This device really demonstrates the extraordinary potential of multijunction solar cells,” said John Geisz, a principal scientist in the High-Efficiency Crystalline Photovoltaics Group at NREL and lead author of a new paper on the record-setting cell.

The cell has a measured efficiency of 47.1% under concentrated illumination, with one variant setting a new efficiency record under one-sun (natural) illumination of 39.2%.

The team used III-V materials — so called because of their position in the periodic table, also known as the boron group of semiconductors — to build their new cell; such materials have a wide range of light absorption properties that made them ideal for the task. Due to their highly efficient nature and the cost associated with making them, III-V solar cells are most often used to power satellites

The cell’s six junctions represent photoactive layers, and each is designed to capture light from a certain part of the solar light spectrum — in essence, each layer is specialized in absorbing as much as it can from certain parts of incoming light. The device also contains about 140 layers of various III-V materials to support these junctions, however, it’s only one-third the thickness of a human hair, the team explains.

“One way to reduce cost is to reduce the required area,” says Ryan France, co-author and a scientist in the III-V Multijunctions Group at NREL, “and you can do that by using a mirror to capture the light and focus the light down to a point. Then you can get away with a hundredth or even a thousandth of the material, compared to a flat-plate silicon cell. You use a lot less semiconductor material by concentrating the light. An additional advantage is that the efficiency goes up as you concentrate the light.”

France adds that exceeding the 50% efficiency mark is “actually very achievable”, but reaching 100% efficiency is impossible due to the fundamental limits of thermodynamics — then again, that stands true for all engines and devices used to generate or convert power.

Geisz explains that the current hurdle in exceeding 50% efficiency is presented by resistive barriers that form inside the cell which make it harder for electrical currents to flow. While the team is working on tackling this issue, NREL overall is working heavily towards making III-V solar cells more affordable, to give this technology a competitive edge on the market.

The paper “Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration” has been published in the journal Nature Energy.

share Share

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.