homehome Home chatchat Notifications


Scientists discover new phase of liquid crystals, opening the door for novel advanced materials

Newly identified liquid crystals can align their molecules in the same direction when an electric field is applied.

Tibi Puiu
June 11, 2020 @ 9:34 pm

share Share

Flashing colors appearing under a microscope when an electric field is applied to liquid crystals made from RM734. Credit: University of Colorado.

After the idea was first described theoretically over 100 years ago, researchers at the University of Colorado have now demonstrated that liquid crystals can indeed exist in a so-called “ferroelectric nematic” phase. The discovery could usher in a new class of advanced materials.

Neither liquid nor solid

You might not be familiar with nematic liquid crystals, but you most likely have heard about LCDs, or liquid crystal displays. In order to display things on the screen, LCDs operate by applying a varying electric voltage to a layer of liquid crystal, thus changing their optical properties.

This is possible thanks to the material’s intriguing mix of both fluid- and solid-like properties, which enable them to manipulate light.

Nematic liquid crystals are made of rod-shaped molecules, with one end carrying a positive charge and the tail-end carrying a negative charge. Due to this property, in a ‘soup’ of nematic liquid crystals, half of the molecules will point left and the other half will point right, with the direction chosen at random.

Turns out, these liquid crystals can exist in another phase known as the ferroelectric nematic liquid crystal phase. In such liquid crystals, the molecules all point in the same direction, either left or right. Physicists call this behavior polar ordering.

“There are 40,000 research papers on nematics, and in almost any one of them you see interesting new possibilities if the nematic had been ferroelectric,” Noel Clark, professor of physics and director of University of Colorado Boulder’s Soft Materials Research Center (SMRC), said in a statement.

That possibility is very much real now, and it took more than 100 years for us to have this confirmation of a new liquid crystal phase.

At the turn of the last century, Nobel Laureates Peter Debye and Max Born first proposed that liquid crystals could fall into a polar ordered state, as long as the molecules had the right design.

Later, other researchers showed that some solid crystals could point their molecules in uniform directions, allowing their direction to be reversed under the presence of an electric field. Such solid crystals are known as “ferroelectrics” due to their similarities with magnets.

However, the hunt for ferroelectric liquid crystals proved far more challenging than physicists imagined — until Clark heard about an organic molecule called RM734, developed years ago by another group of British and Slovenian scientists.

At high temperature, RM734 exhibited a conventional nematic liquid crystal phase, like the kind found in modern LCDs. At lower temperatures, another unusual phase appeared.

When Clark and colleagues imaged this unusual phase under the microscope they were struck by a palette of colors flashing towards the edges of the cell containing the liquid crystal.

Views of a new phase of liquid crystal as seen under the microscope. The diamond shapes reveal “domains” in which almost all of the molecules take on the same orientation as shown by the arrows (bottom). Credits: SMRC

“It was like connecting a light bulb to voltage to test it but finding the socket and hookup wires glowing much more brightly instead,” he said.

Subsequent experiments revealed that, in this phase, RM734 was 100 to 1,000 times more responsive to electric fields than typical nematic liquid crystals, indicating strong polar order.

Upon further inspection, the researchers found distinct domains forming spontaneously in the liquid crystals when they were cooled. These patches contained molecules that were aligned in the same uniform direction.

“That confirmed that this phase was, indeed, a ferroelectric nematic fluid,” Clark said.

Next, the researchers plan on finding out how exactly RM734 is able to have this property. They are working on computer simulations to answer this question.

“This work suggests that there are other ferroelectric fluids hiding in plain sight,” Clark said. “It is exciting that right now techniques like artificial intelligence are emerging that will enable an efficient search for them.”

The findings appeared in the journal Proceedings of the National Academy of Sciences.

share Share

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.