homehome Home chatchat Notifications


New metal organic framework can produce valuable chemicals out of factory smoke

Protecting the environment is easiest when it makes economic sense.

Alexandru Micu
January 4, 2022 @ 7:15 pm

share Share

New technology aims to turn smoke from industry and power generation into useful, commercially-valuable products. The process hinges on a newly-developed metal organic framework (MOF) as a catalyst.

Image via Pixabay.

Smokestacks around the world release a tremendous amount of carbon dioxide gas into the atmosphere. What if, instead of letting it pile up in the atmosphere and heat up the climate, we captured this CO2 and put it to good use, instead? That’s exactly the aim of a scientific collaboration led by researchers at Oregon State University — and, according to a new study they published, one they accomplished.

The team describes a new metal organic framework, a compound material in which metals are used as a base, and interlaced with organic crystals. The compounds inside this MOF act as a catalyst, enabling the production of cyclic carbonates — a useful family of chemicals — from CO2 released in factory flue gases (smokestacks).

Up in smoke

We’ve taken a big step toward solving a crucial challenge associated with the hoped-for circular carbon economy by developing an effective catalyst,” said chemistry researcher Kyriakos Stylianou of the Oregon State University College of Science, who led the study. “A key to that is understanding the molecular interactions between the active sites in MOFs with potentially reactive molecules.”

The novel MOF is loaded with propylene oxide, a common industrial chemical. This acts as a catalyst, allowing for the quick and easy conversion of CO2 gas into cyclic carbonates. These latter compounds have ring-shaped molecules and are quite useful for a variety of applications — ranging from pharmaceutical precursors to battery electrolytes.

The best part about this is that carbon is scrubbed out of flue gases in the process. Essentially, this MOF can be used to clean greenhouse gases from the smoke. It can also remove carbon from biogas (a mix of CO2, methane, and other gases produced by decaying organic matter).

The MOF is based on lanthanides, a somewhat special (and somewhat rare) family of metals — in fact, they’re often referred to as ‘rare earths’. They are soft, silvery-white, and have a variety of uses. Some examples of lanthanides include cerium, europium, and gadolinium.

Lanthanides were used for the MOF because they provide good chemical stability. This is especially important because the gases the MOF will be exposed to are hot, high in humidity, and quite acidic. The metal acts as a binder, holding the active organic materials in place so they can act as catalysts.

“We observed that within the pores, propylene oxide can directly bind to the cerium centers and activate interactions for the cycloaddition of carbon dioxide,” Stylianou said. “Using our MOFs, stable after multiple cycles of carbon dioxide capture and conversion, we describe the fixation of carbon dioxide into the propylene oxide’s epoxy ring for the production of cyclic carbonates.”

The team says that their findings are “very exciting”. They’re particularly thrilled about the MOF’s ability to use carbon dioxide gas even from impure sources, which saves time, energy, and costs associated with separating it before the process.

The paper “Lanthanide metal–organic frameworks for the fixation of CO2 under aqueous-rich and mixed-gas conditions” has been published in the Journal of Materials Chemistry A.

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.