homehome Home chatchat Notifications


Pioneers of self-assembling 2D layers receive Kavli Prize for nanoscience

It's a technology that's already affecting our lives.

Mihai Andrei
June 2, 2022 @ 12:10 am

share Share

Imagine a material that’s so thin it’s essentially two-dimensional. Now, imagine it’s able to form spontaneously on different surfaces and change the properties of these surfaces in multiple ways. It’s one of the wonders brought to us by nanoscience, and this type of structure is called a “self-assembling monolayer”.

This type of technology is now widely used in a number of applications, from medicine and electronics to sensing. Four researchers who pioneered various aspects of self-assembling monolayers were recently awarded the prestigious Kavli prize to celebrate their achievements in the field: David L. Allara (USA), Ralph G. Nuzzo (USA), Jacob Sagiv (Israel), and George Whitesides (USA).

The world of monolayers opens up many exciting possibilities. Image credits: Kavli Award.

We take a lot of materials we use today for granted, but many of them were developed relatively recently — and their existence makes the technology around us possible. Some of this innovation happens at the very surface of materials, which is where we interact with them.

The concept of self-assembled monolayers has been floating around for about a century, but for a long time, this was only restricted to liquid films. The first films were invented by Katharine Blodgett and Irving Langmuir, but these only formed at the interface between air and liquid.

The field of deploying monolayers on solid surfaces starts with the work of Jacob Sagiv. In a landmark paper from 1980, Sagiv showed that some molecules could be bound on the surfaces of some materials, which he suggested could be used in a number of applications. He was right: if we fast forward to the 2010-2020 decade, there are some 400-500 patents filed every year for this type of technology.

Application sectors of SAMs based on an analysis of patents from worldwide patent offices and with an application date between January 2011 and January 2022. Please note that the same patent can belong to (and thus be counted in) more than one application field reported in the pie chart. Figure by A. Della Pia and D. Magri, Ciaotech/ PNO consultants; analysis based on the Wheesbee platform.

Just three years later, Ralph Nuzzo and David Allara, working at the now-legendary Bell Labs, achieved another milestone: they showed that films of molecules can be adsorbed onto glass and metal surfaces (adsorbtion being adhesion of atoms, ions or molecules to a surface. This is important for a number of reasons; first of all, it expanded the range of usable surfaces and layer molecules. But Nuzzo and Allara also accurately estimated the thickness and structure of these layers, which enabled an even better customization of the physical properties of these monolayers.

Image credits: Nils Lund / Kavli Prize.

While Sagiv, Nuzzo, and Allara paved the way for self-assembling monolayers on solid materials to become a reality, it was George Whitesides who, along with his colleague, found more practical ways of patterning surfaces with nanoscale layers. Whitesides proved that by using a special type of “stamp”, it was possible to generate configurations with different shapes and sizes within the same layer. Furthermore, the same stamp could be reused to produce the same results time and time again, substantially reducing the time and cost necessary for creating these monolayers. This new way of creating monolayers triggered a surge in the applications for this type of monolayer.

Image of a flexible plastic active-matrix backplane circuit fabricated using soft-lithographic patterning methods. Image is courtesy of Professor John A. Rogers, who had worked in George Whitesides’ group, and exemplifies historically important advances in fabrication. These results were reported in PNAS 98, 4835–840 (2001).

Nowadays, we use self-assembled monolayers in a number of sensors, energy devices, inks, and electronics. This is already a maturing technology that is impacting our lives, showing that nanoscale inventions can have a macroscopic impact on our lives.

share Share

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.