homehome Home chatchat Notifications


Tasty moths try to evade predators -- unappetizing moths don't really bother

Moths that employ chemical defenses aren't in a hurry to avoid predatory bats.

Alexandru Micu
December 16, 2019 @ 6:13 pm

share Share

A new study suggests that plump, palatable moths will employ evasive maneuvers when under attack by a predator — but the less appealing ones won’t.

A great tiger moth (Arctia caja).

While running away from predators might seem — quite literally, sometimes — a knee-jerk reaction, not all animals behave this way. Further muddying the waters, not all species, even if closely related, behave the same way. So, why is that?

A new study looking into the predator-prey relationship between bats and moths suggests that less appetizing moths are more nonchalant when attacked by bats, whereas more palatable moths tend to employ evasive maneuvers. The work sheds light on the intricacies and complexities of anti-predator strategies in the wild, as well as their associated risks and rewards.

I’m a treat

Moths employ several layers of defense against potential predators. The most straightforward one is simply don’t be seen (by using camouflage) and don’t get caught (performing swoops and dives during a chase). They also employ chemical compounds that make them less appealing to predators and ultrasonic hearing (so they can hear bats on the prowl).

However, we know precious little about how these factors intertwine, and how they vary between different species of moths. A new paper led by Dr. Nicolas Dowdy of the Milwaukee Public Museum and Wake Forest University notest that certain species of tiger moths behave very strangely when attacked by predatory bats — they’re almost entirely unfazed.

In order to understand why, Dowdy and his team collected specimens from five different tiger moth species and released them in an outdoor “flight arena” at night, where wild bats would frequently swoop in to feed. The interactions were recorded using infrared cameras so that the team could track the behavior of each species during a bat attack. In order to quantify how appealing individual moths were, they tracked whether the bats ate them or spat them out.

The team’s hypothesis was that more carefree moths had chemical defenses in place to make them less ‘tasty’ for predators. Because of this, they would have less incentive to engage in evasive behavior when around bats, as their main defense relied on those chemical compounds. On the other hand, moths that lack these chemical armor — making them more ‘delicious’ — need to rely solely on the efficiency of their evasive maneuvers.

The team explains that there is a cost to engaging in anti-predatory behavior, such as evasive flying. A panicked moth might swerve at the last minute and avoid a bat, but that same risky maneuver costs energy, and may even land it in a spider web, or simply takes it away from food or a mate. Moths that do employ chemical defenses, the team believed, take the approach of not dodging bats because, in effect, it’s safer and ‘cheaper’ (energetically-speaking) than trying to fly out of the way.

“Strikingly, we observed that moths with weak or no chemical defenses often dive away to escape bat attacks,” explained Dowdy. “However, moths with more potent chemical defenses are more ‘nonchalant’, performing evasive maneuvers less often.”

By the end of the experiment, the team could reliably predict whether a particular moth would engage in evasive or nonchalant behavior in the arena based on their palatability. They say this mechanism likely functions in other species as well. Another exciting possibility is that the study can be used to reconstruct the behaviors or rare or even extinct species, the team explains.

By measuring levels of chemical defenses in a preserved specimen (i.e. compounds that made it un-tasty), they can reconstruct a species’ palatability. And, based on that, the team can estimate whether the species was active or lazier in its effort to evade predators.

So if you ever find yourself in the savannah staring down a lion, try your best to look deeply unsatisfying. And definitely don’t sprinkle catnip all over you.

The paper “Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated With Unpalatability” has been published in the journal Frontiers in Ecology and Evolution.

share Share

Dinosaur Teeth Help Scientists Recreate the Air Dinosaurs Once Breathed

Dinosaurs inhaled air with four times more CO2 than today.

Coastal Flooding Is Much Worse Than Official Records Show — and No One’s Measuring It

There were big flaws in how we estimated floods in coastal communities.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

Huge Centuries-Old Human Figures Carved in Sandstone Are Suddenly Visible Again on Hawaii Beach

Beneath the shifting sands of an Oahu beach, ancient carvings — hidden for years — have suddenly reemerged.

A Popular Artificial Sweetener Could Be Making Cancer Treatments Less Effective

Sucralose may weaken immunotherapy by altering gut microbes and starving immune cells

AI Designs Computer Chips We Can't Understand — But They Work Really Well

Can we trust systems we don’t fully understand?

Strength Training Unlocks Anti-Aging Molecules in Your Muscles

Here’s how resistance training can trigger your body’s built-in anti-aging switch.

"Self-termination is most likely." This expert believes our civilization is on a crash course led by narcissistic leaders

Our civilization may be facing a “single gargantuan crash,” but collapse isn’t destiny. It’s a choice.

New DNA Evidence Reveals What Actually Killed Napoleon’s Grand Army in 1812

Napoleon's army was the largest Europe had ever seen, but in just a few months it was obliterated.

Breathing This Common Air Pollution May Raise Your Dementia Risk by 17 Percent

Long-term exposure to common air pollutants like soot and traffic fumes may significantly raise your risk of dementia.