homehome Home chatchat Notifications


We really are made of star stuff: half of the atoms inside us come from intergalactic space

Aside from the romantic aspect, the study also offers an important scientific perspective.

Mihai Andrei
July 28, 2017 @ 2:02 pm

share Share

Simulations reveal a poetic side to our inner atoms.

I guess we’re all intergalactic immigrants. Image credits: Spitzer / NASA.

A sense of scale

Even the size of the Earth can be hard to fathom. Nowadays, it can be so easy to get from place to place by driving or flying that our sense of distance gets distorted. But let’s translate things into something more familiar.

If you could magically walk on water, it would take 140 days of heavy walking to pass the almost 6,000 km from New York to London. You might think that’s incredibly far, but when it comes to outer space, that’s just peanuts. The Moon, our satellite, is 384.400 km away from the Earth. We got to the Moon in 1969, but to this day, we haven’t been able to plan a mission to Mars — which is much farther away. If you think that’s far, just consider how big the solar system is: the distance between the Sun and Neptune is 4.49 billion km. Then, let’s consider the next solar system, which is 4.22 light years away — a whopping 40,000 billion kilometers away from Earth. Are you getting the sense of scale? We’re not done yet.

There are an estimated 100 billion solar systems in our galaxy, with comparable distances between them. The immensity of the galaxy truly is humbling, and the distance between galaxies? That’s at over 11 million light years, and I just don’t want to put that in kilometers.

You might wonder why we did all that contorted imagination exercise. Well, we went from a very large but conceivable distance (New York to London) to an unfathomable distance outside our galaxy. Everything outside our galaxy is so far away that seems like it couldn’t possibly affect us. Except, as scientists learned, half of the matter in our own galaxy comes from outside.

Star stuff

Carl Sagan famously said we are made of star stuff, and his words ring truer today more than ever. According to modern physics, the first atomic nuclei were formed three minutes after the Big Bang — before that, things were just too hot for the atoms to be stable. This is the so-called nucleosynthesis era.

But at that time, only hydrogen, helium, and some trace quantities of lithium were formed, so where does all the other stuff come from? Well, things like carbon, oxygen, or heavier elements such as gold and silver, were formed in the primordial supernovae: incredibly huge and relatively short-lived stars. These supernovae exploded with such incredible power that they scattered matter all over the universe.

Faucher-Giguère and his co-author Daniel Anglés-Alcázar wanted to see to what extent is matter in the Milky Way a far traveler. They found that matter travel has been greatly underrated.

Galactic winds as a mode of transfer has been underappreciated,” says Jessica Werk at the University of Washington in Seattle. “Daniel Anglés-Alcázar uses one of the best simulations to do a detailed particle tracking analysis and really laid it all out for us.”

In a report in the Monthly Notices of the Royal Astronomical Society, they write that the Milky Way absorbs about one sun’s worth of extragalactic material every year, and that half of the matter inside the galaxy was actually “imported.” In a way, we’re all intergalactic travelers.

“The surprising thing is that galactic winds contribute significantly more material than we thought,” said Anglés-Alcázar. “In terms of research in galaxy evolution, we’re very excited about these results. It’s a new mode of galaxy growth we’ve not considered before.”

Aside from the romantic aspect, the study also offers an important scientific perspective. Knowing where matter comes from and how it evolves is one of the cornerstones of modern cosmology.

“It’s one of the holy grails of extra galactic cosmology,” Werk says. “Now, we’ve found that half these atoms come from outside our galaxy.”

Journal reference: Monthly Notices of the Royal Astronomical SocietyDOI: 10.1093/mnras/stx1517

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes