homehome Home chatchat Notifications


Monkeys can do math, study proves

It’s long been supposed that monkeys are capable of mental arithmetics, but it was only recently that this was proven for a fact by neuroscientists at the Margaret Livingstone of Harvard Medical School in Boston. The researchers taught three rhesus macaques to identify symbols representing the numbers zero to 25, then when given the choice […]

Tibi Puiu
April 22, 2014 @ 9:55 am

share Share

rhesus_monkey

Photo: PNAS

It’s long been supposed that monkeys are capable of mental arithmetics, but it was only recently that this was proven for a fact by neuroscientists at the Margaret Livingstone of Harvard Medical School in Boston. The researchers taught three rhesus macaques to identify symbols representing the numbers zero to 25, then when given the choice between two panels, one depicting a number symbol and the other depicting an addition of two other symbols, the monkeys proved they could do math and choose which of the two was bigger. This doesn’t just mean that monkeys are smarter than everyone might have thought; it also raises important questions as to how mammalians brains, including those of us humans, work and engage with our surroundings.

Previously, researchers showed that chimpanzees could add single-digit numbers. The results were nothing short of remarkable, but the study didn’t conclude what process go on in the primate’s brain when this addition was going on. The new study which studied the rhesus monkeys sheds more light on these aspects.

Margaret Livingstone of Harvard Medical School in Boston and colleagues trained three monkeys to associate the Arabic numbers 0 through 9 and 15 select letters with the values zero through 25. To receive food, the monkey had to choose between two boards: one that showed an addition of two symbols and the other only one symbol. If the monkey chose the greater number of the two, it received more tasty food.  Within 4 months, the monkeys had learned how the task worked and were able to effectively add two symbols and compare the sum to a third, single symbol.

So be certain the monkeys were simply memorizing the symbols and all possible combinations (that’s no how arithmetic works, clearly), the researchers introduced an entirely different set of symbols representing the numbers zero to 25 in the form of tetris-like blocks instead of the familiar Arabic numbers and Latin letters. According to the study, all three monkeys were on average capable of choosing the correct answer “well above” 50 percent of the time, which is statistically relevant enough to infer that the rhesus monkeys could actually do the math and not simply rely on chance.

A rhesus monkey preparing to choose the four and five combination on the panel. (c) PNAS

A rhesus monkey preparing to choose the four and five combination on the panel. (c) PNAS

What’s interesting to note is that after the researchers analyzed their findings in greater deal they began to understand why the monkeys weren’t right most of the time with their calculations. Apparently, they tended to underestimate a sum compared with a single symbol when the two were close in value—sometimes choosing, for example, a 13 over the sum of eight and six. Basically, when the monkey was adding two numbers, it paid close attention to the large of the two and then added only a fraction of the lesser number to make up the sum; which obviously came out wrong from the real answer.

This peculiar, since one prevailing theory on how the brain processes number representations is that it underestimates the value of larger numbers in a systematic and unchangeable way. The present findings contradict this idea and may help researchers better understand how human beings process numbers. Also, the findings could also help shed light on dyscalculia (similar to dyslexia, only it involves failing to perform mathematical operations instead of reading – an interesting piece about it worth reading here). It’s not that people with dyscalculia have an intellect comparable with rhesus monkeys – far from it, apart from their disability to perform arithmetic, they’re totally cognitively functioning human beings. Estimating values, the present study suggests, may be key to how addition works.

Results were published in the journal PNAS.

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.