homehome Home chatchat Notifications


Mars' water didn't escape; it's trapped in the red crust

Not being tectonically active has its drawbacks.

Alexandru Micu
March 17, 2021 @ 7:58 pm

share Share

New research from Caltech and JPL suggests that Mars never lost its water — it just drank it up, so to speak.

Digital rendering of Mars. Image credits Kevin Gill via Wikimedia.

Billions of years ago, our red neighbor had an atmosphere and maintained liquid water on its surface. We know this because Mars’ surface is littered with ancient river- and lake beds. The prevailing wisdom today is that once the planet lost its geological activity and thus, its magnetic field, it lost, in turn, its atmosphere and surface water, which were blown away by solar winds.

But new research says that at least the water might still be there. According to the findings, anywhere between 30% to 99% of its original water is trapped in minerals within the Martian crust.

Better red than dry

“Atmospheric escape doesn’t fully explain the data that we have for how much water actually once existed on Mars,” says Caltech PhD candidate Eva Scheller, lead author of the paper.

According to the team, around four billion years ago Mars had enough liquid water to cover its entire surface in an ocean between 100 to 1,500 meters deep. That, they explain, would be roughly equivalent to half the entire volume of the Atlantic Ocean. However, around three billion years ago, Mars looked as it does today — dry as bone. The planet’s low gravitational pull was believed to have allowed this water to escape to space over time under the action of solar winds.

For the study, the team looked at how much water Mars has in all of its forms, as well as the chemical composition of its current atmosphere and crust. They used data beamed back by virtually every Mars rover and orbiter and that we gleaned from meteorites. A particular point of interest for them was to analyze the ratio of deuterium to hydrogen (D/H) isotopes in this water.

The vast majority of water molecules have ‘vanilla’ hydrogen in their molecules — hydrogen atoms with one proton in their nucleus. Around 0.02% of all naturally-occurring water molecules in the Universe, however, include deuterium atoms — “heavy” hydrogen, which has one proton and one neutron at its core — instead.

The value of the D/H ratio in Mars’ atmosphere over time. Image credits L. J. Hallis via Researchgate.

Regular hydrogen is also known as protium and, because of its lower atomic weight, should have an easier time escaping a planet’s gravity into space. But this also means that such a process would increase the D/H ratio in Mars’ current atmosphere (i.e. increase the presence of deuterium above the 0.02% mark), which is something we can check. What the paper argues, however, is that this escape process can’t explain where all the water that’s missing has gone, and the D/H ratio, by itself. Instead, the team proposes that another mechanism worked at the same time: the trapping of water in minerals inside the planet’s crust. Together, the team explains, they could produce the conditions we see today on Mars.

The interaction between water and silicate rocks generates minerals such as clay through a process called (chemical) weathering. These minerals often contain water in their structure. While chemical weathering takes place on both Earth and Mars all the time, Earth is tectonically active, meaning weathered minerals eventually find their way back into the mantle where they’re recycled, which brings the water back out through volcanic eruptions. Since Mars isn’t tectonically active, the water trapped in its crust is no longer being cycled back out.

“Atmospheric escape clearly had a role in water loss, but findings from the last decade of Mars missions have pointed to the fact that there was this huge reservoir of ancient hydrated minerals whose formation certainly decreased water availability over time,” says Ehlmann.

“All of this water was sequestered fairly early on, and then never cycled back out,” adds Scheller.

The team previously used a similar approach to understand how habitability on Mars evolved over time by tracking carbon dioxide, currently the main ingredient of its atmosphere. In the future, they plan to continue examining the processes through which Mars’ water disappeared in their lab, and later expand their research to nitrogen and sulfur-rich minerals. Samples to-be-recovered by the Perseverance rover will help confirm or deny their current hypothesis.

The paper “Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust” has been published in the journal Science.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes