homehome Home chatchat Notifications


Stunning new map of Mars' geology shows that it harbored much more water than previously assumed

This research proves that Mars used to have quite a lot of surface water.

Alexandru Micu
August 25, 2022 @ 8:45 pm

share Share

A decade’s worth of data has been used to create the most detailed and up-to-date map of the mineral deposits across Mars’ surface.

Mars’ history, and the role water plays in it, have always been somewhat unclear. But new research comes to show that even what we assumed we knew may not, in fact, be true.

The map was created using data from ESA’s Mars Express Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) instrument and NASA’s Mars Reconnaissance Orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). One of its most important features is that it shows the location and abundance of aqueous mineral deposits on the planet. Aqueous minerals typically consist of salts or clays and are formed through the action of water — in other words, the location and nature of these deposits can tell us a lot about the history of Mars‘ liquid water.

Flow with the times

“This work has now established that when you are studying the ancient terrains in detail, not seeing these minerals is actually the oddity,” says John Carter, Assistant Astronomer at the Institut d’Astrophysique Spatiale (IAS) and Laboratoire d’Astrophysique de Marseille (LAM), France, and lead author of the paper describing the findings.

On Earth, clays form when water interacts with preexisting rocks. Different types of clay form based on the mineral composition of these rocks, and on the environmental conditions where the interaction takes place. Two types in particular, smectite and vermiculite, form when only small quantities of water react with a base of volcanic rock; due to the limited amount of water involved, the clays retain mainly the same chemical compounds as the rock they derive from. As such, both smectite and vermiculite are characterized by high levels of iron and magnesium.

However, when more water goes into the reaction, the initial volcanic rock can be altered to a much higher degree. Soluble elements are drained away, which leads to the creation of aluminum-rich minerals such as kaolin clay.

So, judging by the disposition of these clays and salt deposits, researchers can map the history of liquid water on the surface of Mars.

One of the most surprising elements highlighted by the finished map was just how prevalent these minerals seem to be across the face of the planet. While these were considered to mostly be geological oddities, the current map reveals that they are far from such. Previously known only in around 1000 outcrops on Mars, the map shows that there are upwards of hundreds of thousands of such areas strewn all over Mars. A large number of these deposits are found on some of the oldest areas of the planet’s surface.

These findings rewrite our current assumptions regarding Mars’ lost water. The previous train of thought was that, since aqueous minerals are rare on the Martian surface, it was likely that the planet only harbored limited amounts of the liquid and for a relatively short period of time. The main hypothesis was that the limited amounts of clay on Mars were formed during this short window of time before water gradually dried up across the planet. Its deposit of salts formed during this drying period.

Faced with the current data, it is obvious and beyond a shadow of a doubt that water had a central role to play in shaping Martian geology. The only question remaining now is whether this greater quantity of water had a constant, long-term presence, or if it was only found on Mars’ surface for shorter periods of time.

While it’s probable that many of the salt deposits on Mars were formed after the clays, the map suggests that there were many exceptions to this rule and that the two types of minerals often formed and mixed together.

“I think we have collectively oversimplified Mars,” Carter concludes.

“The evolution from lots of water to no water is not as clear cut as we thought, the water didn’t just stop overnight. We see a huge diversity of geological contexts, so that no one process or simple timeline can explain the evolution of the mineralogy of Mars. That’s the first result of our study. The second is that if you exclude life processes on Earth, Mars exhibits a diversity of mineralogy in geological settings just as Earth does.”

The paper “A Mars Orbital Catalog of Aqueous Alteration Signatures (MOCAAS)” has been published in the journal Icarus.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes