homehome Home chatchat Notifications


Stunning new map of Mars' geology shows that it harbored much more water than previously assumed

This research proves that Mars used to have quite a lot of surface water.

Alexandru Micu
August 25, 2022 @ 8:45 pm

share Share

A decade’s worth of data has been used to create the most detailed and up-to-date map of the mineral deposits across Mars’ surface.

Mars’ history, and the role water plays in it, have always been somewhat unclear. But new research comes to show that even what we assumed we knew may not, in fact, be true.

The map was created using data from ESA’s Mars Express Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) instrument and NASA’s Mars Reconnaissance Orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). One of its most important features is that it shows the location and abundance of aqueous mineral deposits on the planet. Aqueous minerals typically consist of salts or clays and are formed through the action of water — in other words, the location and nature of these deposits can tell us a lot about the history of Mars‘ liquid water.

Flow with the times

“This work has now established that when you are studying the ancient terrains in detail, not seeing these minerals is actually the oddity,” says John Carter, Assistant Astronomer at the Institut d’Astrophysique Spatiale (IAS) and Laboratoire d’Astrophysique de Marseille (LAM), France, and lead author of the paper describing the findings.

On Earth, clays form when water interacts with preexisting rocks. Different types of clay form based on the mineral composition of these rocks, and on the environmental conditions where the interaction takes place. Two types in particular, smectite and vermiculite, form when only small quantities of water react with a base of volcanic rock; due to the limited amount of water involved, the clays retain mainly the same chemical compounds as the rock they derive from. As such, both smectite and vermiculite are characterized by high levels of iron and magnesium.

However, when more water goes into the reaction, the initial volcanic rock can be altered to a much higher degree. Soluble elements are drained away, which leads to the creation of aluminum-rich minerals such as kaolin clay.

So, judging by the disposition of these clays and salt deposits, researchers can map the history of liquid water on the surface of Mars.

One of the most surprising elements highlighted by the finished map was just how prevalent these minerals seem to be across the face of the planet. While these were considered to mostly be geological oddities, the current map reveals that they are far from such. Previously known only in around 1000 outcrops on Mars, the map shows that there are upwards of hundreds of thousands of such areas strewn all over Mars. A large number of these deposits are found on some of the oldest areas of the planet’s surface.

These findings rewrite our current assumptions regarding Mars’ lost water. The previous train of thought was that, since aqueous minerals are rare on the Martian surface, it was likely that the planet only harbored limited amounts of the liquid and for a relatively short period of time. The main hypothesis was that the limited amounts of clay on Mars were formed during this short window of time before water gradually dried up across the planet. Its deposit of salts formed during this drying period.

Faced with the current data, it is obvious and beyond a shadow of a doubt that water had a central role to play in shaping Martian geology. The only question remaining now is whether this greater quantity of water had a constant, long-term presence, or if it was only found on Mars’ surface for shorter periods of time.

While it’s probable that many of the salt deposits on Mars were formed after the clays, the map suggests that there were many exceptions to this rule and that the two types of minerals often formed and mixed together.

“I think we have collectively oversimplified Mars,” Carter concludes.

“The evolution from lots of water to no water is not as clear cut as we thought, the water didn’t just stop overnight. We see a huge diversity of geological contexts, so that no one process or simple timeline can explain the evolution of the mineralogy of Mars. That’s the first result of our study. The second is that if you exclude life processes on Earth, Mars exhibits a diversity of mineralogy in geological settings just as Earth does.”

The paper “A Mars Orbital Catalog of Aqueous Alteration Signatures (MOCAAS)” has been published in the journal Icarus.

share Share

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

This nimble dinosaur may have sparked the evolution of one of the deadliest predators on Earth.

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.