homehome Home chatchat Notifications


Machine learning is paving the way towards 3D X-rays

It's still not ready for a hospital near you, but it will get there eventually.

Alexandru Micu
July 27, 2021 @ 7:46 pm

share Share

Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have developed a new AI-based framework that can produce X-ray images in 3D.

The Advanced Photon Source (APS) at Argonne National Laboratory, one of the most technologically complex machines in the world, provides ultra-bright, high-energy x-ray beams for researchers across the USA. Image credits Argonne National Laboratory / Flickr.

The team, which includes members from three divisions at Argonne, has developed a method to create 3D visualizations from X-ray data. Their efforts were meant to allow them to better use the Advanced Photon Source (APS) at their lab, but potential applications of this technology range from astronomy to electron microscopy.

Lab tests showed that the new approach, called 3D-CDI-NN, can create 3D visualizations from data hundreds of times faster than existing technology.

More dimensions

“In order to make full use of what the upgraded APS will be capable of, we have to reinvent data analytics. Our current methods are not enough to keep up. Machine learning can make full use and go beyond what is currently possible,” says Mathew Cherukara of the Argonne National Laboratory, corresponding author of the paper.

The “CDI” in the technique’s name stands for coherent diffraction imaging, which is an X-ray technique that involves reflecting ultra-bright X-ray beams off of a certain sample that’s being investigated. These are later picked up by an array of detectors, and processed to produce the final image. The issue with this, says Cherukara, is that these detectors are limited in what information they can pick up from the beams. The “NN” stands for “neural network”.

Since important information can be missed during this step, software is used to fill it back in. Naturally, this is a very computationally- and time-intensive step. The team decided to train an AI that could side-step this entirely, being able to recognize objects straight from the raw data. They trained the AI using simulated X-ray data.

“We used computer simulations to create crystals of different shapes and sizes, and we converted them into images and diffraction patterns for the neural network to learn,” said Henry Chan, the lead author on the paper and a postdoctoral researcher in the Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility at Argonne, who led this part of the work. “The ease of quickly generating many realistic crystals for training is the benefit of simulations.”

After this, the AI was pretty good: it could arrive at close to the right answer in an acceptable span of time. The team further refined it by adding an extra step to the process, to help improve the accuracy of its output. They then tested it on real X-ray readings of gold particles collected at the APS. The final form of the neural network proved it can reconstruct the information not captured by detectors using less data than current approaches.

The next step, according to the team, is to integrate it into the APS’s workflow, so that it can learn from new data as it’s being taken. The APS is scheduled to receive a massive upgrade soon, which will increase the speed at which it can collect X-ray data roughly 500-fold. With this in mind, having an AI such as the one created by the team available to process data in real-time would be invaluable.

X-rays can allow us to see how materials behave on the nanoscale, i.e. on scales 100,000 smaller than the width of a human hair. But the sheer amount of data captured at such resolutions meant that processing remained time-consuming. Technology such as this, the team explains, would allow us to peer at the very, very small much more easily than ever before. Alternatively, it could help us understand the very large, as well, as several types of astronomical bodies emit X-rays towards Earth.

And, while the work at Argonne was carried out using samples of crystal, there’s no reason why the technology can’t be adapted for medical applications, as well.

“In order to make full use of what the upgraded APS will be capable of, we have to reinvent data analytics,” Cherukara said. “Our current methods are not enough to keep up. Machine learning can make full use and go beyond what is currently possible.”

The paper “Rapid 3D nanoscale coherent imaging via physics-aware deep learning” has been published in the journal Applied Physics Reviews.

share Share

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.