homehome Home chatchat Notifications


Volcano-dwelling beetle inspires new 'passive cooling' material

It helps disperse heat and reflect sunlight.

Alexandru Micu
June 16, 2020 @ 5:32 pm

share Share

Researchers at The University of Texas at Austin’s Cockrell School of Engineering, alongside scientists from China and Sweden, have created a new material that passively cools itself down.

A Longicorn Beetle.
Image credits Flickr / patrickkavanagh.

The material was inspired by the wing structure of a longicorn beetle species native to volcanic areas in Southeast Asia. The beetles rely on self-cooling tissues to allow them to live in such inhospitable places.

Cool new materials

“Anywhere that needs cooling, this can help,” said Yuebing Zheng, an associate professor in the Walker Department of Mechanical Engineering. “Refrigerators, air conditioners and other methods consume large amounts of energy, but this is cooling by itself.”

While the insect uses its body’s ability to regulate heat and gain access to an environment its competitors can’t live in, the researchers plan to use the new material it inspired to help cool everything from buildings to electronic devices in an environmentally friendly manner.

The researchers first had to determine what gave the beetle (Neocerambyx Gigas, one of 26,000 species of longhorn beetle) its cooling capability. They discovered that their wings are covered in triangular “fluffs” that disperse body heat while also reflecting sunlight.

The team then created a new “photonic film” based on these structures. This film is constructed from common, flexible material (PDMS polymer), and the team explains that it is mechanically strong enough for wide-spread use and easy to manufacture.

The film is applied as a coating on objects and can help decrease temperatures in spaces, buildings, appliances, or electronics without expending energy to do so. In lab tests, it was able to reduce the temperature of items in direct sunlight by up to a respectable 5.1 degrees Celsius (9 degrees Fahrenheit).

It could be put over windows in office spaces or apartment buildings to reflect incoming sunlight, and thus keep temperatures down. It can also be used to protect solar panels from sunlight-induced degradation, or to keep cars cool while parked. In the long run, it could even be used with clothing and personal electronics, the researchers hope.

The paper “Biologically inspired flexible photonic films for efficient passive radiative cooling” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.