homehome Home chatchat Notifications


Adding lithium makes graphite both transparent and conductive. A great game changer for the industry

Materials found in nature often speak of at least one comprise. Metals for instance are highly conductive, but not transparent. Plastics on the other hand can be made to be transparent, but they’re very poor electrical conductors. This annoying tradeoff has aggravated scientists for some time in their efforts to design better solar cells or […]

Tibi Puiu
July 3, 2014 @ 10:14 am

share Share

Better, far more responsive touchscreen displays might be developed as a result of these findings. Photo:easy-it.ro

Better, far more responsive touchscreen displays might be developed as a result of these findings. Photo:easy-it.ro

Materials found in nature often speak of at least one comprise. Metals for instance are highly conductive, but not transparent. Plastics on the other hand can be made to be transparent, but they’re very poor electrical conductors. This annoying tradeoff has aggravated scientists for some time in their efforts to design better solar cells or touchscreen displays, which need the best of both worlds. A team of researchers at the University of Maryland Energy Research Center and Monash University in Australia may have come across a solution after they report the development of a nearly transparent, highly conductive ultrathin graphite sheet.

Most solar cells, high end touchscreen and flexible displays – the kind that electron flexibility and transparency at the same time – employ materials such as indium tin oxide or carbon nanotubes. These haven’t turned out to be very satisfying, however. According to Jiayu Wan, a Department of Materials Science and Engineering (MSE) graduate student, ideally the industry would like a material with 90 percent transmittance and only 10 Ohms-per-square of sheet resistance. Until now, no such material has been found. With this in mind, the team may have struck gold!

It all starts with graphite, the kind you can find in any pencil lead and one of the most abundant naturally occurring form of carbon. The graphite is made ultrathin between 3 to 60 graphene layers thick, then lithium is introduced such that it becomes intercalated (embedded) between the graphene layers. Graphene is an one-atom thick sheet of carbon known for its inherent strength, transparency, and conductivity. Subsequent tests reveal the lithium molecules greately increase conductivity and visible-range transmittance.

“Lithium provides electrons to the ultrathin graphite, enhancing its conductivity,” Wan explains. “Surprisingly, unlike most other materials, the extra electrons make the graphite more transparent, due to a quantum-mechanical effect. We were able to demonstrate an ultrathin graphite sheet with 91.7 percent transmission of visible light and a sheet resistance of just 3 Ohms-per-square, the highest combined performance of sheet resistance and transmittance among all continuous thin films.”

The observed improvement is at least up to two orders of magnitude greater in both transparency and conductivity, something strikingly different than anything observed in other materials.  The unconventional modification of ultrathin graphite optoelectronic properties is explained by the suppression of interband optical transitions and a small intraband Drude conductivity near the interband edge.

This isn’t the first time intercalation has been used to improve graphite transparency, but this is the first time an increase in both transmittance and conductivity has been observed. The team also believes the measurement techniques developed over the course of the work will enhance the study of the optoelectronic properties of other nanomaterials composed of two-dimensional layers.

The paper was published in the journal Nature Communications.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes