homehome Home chatchat Notifications


Perturbations in Saturn's rings reveal how long a day is on the gas giant

Can I have weekdays in Saturn-days and weekends in Earth-days?

Alexandru Micu
January 21, 2019 @ 5:01 pm

share Share

Saturn’s days are 10 hours, 33 minutes, and 38 seconds long — and we know this by looking at wave patterns in its rings.

Saturn Illustration.

Illustration showing NASA’s Cassini spacecraft in orbit around Saturn.
Image credits NASA / JPL-Caltech.

New observations from NASA’s Cassini spacecraft allowed researchers at the University of California Santa Cruz to calculate Saturn’s rate of rotation. This measurement — the most precise determination of its rotation rate — was based on observations of wave patterns created within the planet’s rings.

Timekeeping rings

“Particles in the rings feel this oscillation in the gravitational field. At places where this oscillation resonates with ring orbits, energy builds up and gets carried away as a wave,” explained Christopher Mankovich, a graduate student in astronomy and astrophysics at UC Santa Cruz, and lead author of the study.

Just like our own planet, Saturn vibrates in response to perturbations (large-scale movement of matter). Unlike our planet, these perturbations come not from the movement of tectonic plates, but likely from heat-driven convection in the planet’s gassy bulk. Such internal oscillations move about massive quantities of gas, which has a noticeable impact on local densities within Saturn’s atmosphere. Such changes, in turn, cause noticeable changes in the planet’s localized gravitational pull. And, even better, the frequency of oscillation within Saturn carries over to the gravitational effects — in short, they share the same ‘fingerprint’, so these internal events can be linked to their external, gravitational effects.

Saturn rings.

Image of Saturn’s rings taken by NASA’s Cassini spacecraft on Sept. 13, 2017.
Image credits NASA / JPL-Caltech / Space Science Institute.

Naturally, we’d need satellites or other sorts of equipment in orbit across the planet to pick up on such gravitational fluctuations. Which we haven’t really brought over yet. Rather conveniently, however, Saturn has a sprawling ring system surrounding it. They do react to the planet’s gravitational pull, its fluctuations causing certain wave patterns to form inside the rings. Not all patterns seen inside the rings are caused by gravitational effects — but most are.

In effect, this makes the rings act similarly to seismographs, devices that we use to measure earthquakes.

“Some of the features in the rings are due to the oscillations of the planet itself, and we can use those to understand the planet’s internal oscillations and internal structure,” says Jonathan Fortney, professor of astronomy and astrophysics at UC Santa Cruz and paper coauthor.

NASA’s Cassini spacecraft allowed researchers to observe Saturn’s rings in unprecedented detail. Mankovich’s team developed a series of models of the planet’s internal structure and used them to predict the frequency spectrum of Saturn’s internal vibrations. Then they compared their predictions to waves observed by Cassini in Saturn’s C ring.

One of the main results of this study is an estimation of Saturn’s speed of rotation — which has been notoriously difficult to accurately pin down. Saturn is basically a huge clump of gas and, as such, its surface doesn’t have any fixed, distinctive features we could track as it rotates. The planet is also unusual in that its magnetic poles are nearly perfectly aligned to its axis of rotation — so we can’t track those either. On Earth, for example, the magnetic poles aren’t aligned with this axis.

Mankovich’s team determined that a day on Saturn lasts for 10 hours, 33 minutes, and 38 seconds — several minutes shorter than previous estimates (which were based on radiometry readings from the Voyager and Cassini spacecraft).

“We now have the length of Saturn’s day, when we thought we wouldn’t be able to find it,” said Cassini Project Scientist Linda Spilker.

“They used the rings to peer into Saturn’s interior, and out popped this long-sought, fundamental quality of the planet. And it’s a really solid result. The rings held the answer.”

The paper “Measurement and implications of Saturn’s gravity field and ring mass” has been published in the journal Science.

share Share

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.