homehome Home chatchat Notifications


LED-equipped fishing nets help protect wildlife from unintentional captures

The fish we want to capture aren't turned away by the lights.

Alexandru Micu
January 26, 2022 @ 10:37 pm

share Share

Green light-emitting diode (LED) lights can help protect wildlife from fishing nets, new research reports.

Image credits Paul Lee.

Affixing green LED lights to fishing nets can significantly reduce the catch of nontargeted animals such as sharks, squids, or turtles, according to a team led by researchers from the Arizona State University. The addition of these lights doesn’t impact the quantity or quality of desired catch species (i.e. commercially-available fish), which helps raise confidence that fisheries will adopt the measure. That being said, the installation of these lights comes with a significant upfront cost per net, which many fisheries may not be able to afford.

Beyond practical concerns, however, the findings showcase that it is possible to maintain our current fishing efficiency while insulating species that aren’t desired from capture.

Lights in the deep

Coastal fisheries routinely use gillnets, devices that resemble chain-link fences, to capture fish. These nets are deployed for up to several days at a time and capture virtually every kind of marine wildlife that cannot fit through their holes. Undesired captures (“bycatch”) are tossed overboard once the nets are recovered. These animals experience very high rates of death following this, adding up to significant pressure on marine species such as dolphins and sea turtles. It also impacts the fisheries’ bottom line, as personnel waste time removing these animals from the nets.

In other words, both business and nature lose out from the use of gillnets.

John Wang, a marine ecologist at the National Oceanic and Atmospheric Administration (NOAA), and his colleagues previously designed illuminated nets in order to protect turtles from becoming bycatch, back in 2016. Turtles seem to be particularly good at noticing green light, and these nets cut down on turtle bycatch by 64%. The current study builds on those findings, examining whether other marine animals could benefit from the same idea.

It turns out, they would. The authors worked with small-scale grouper and halibut fisheries in Baja California, Mexico, as the area is known for its large populations of turtles and other large marine species. They deployed 28 pairs of nets, one of each being equipped with groups of green LED lights every 10 meters. The team gauged their efficiency by identifying and weighing the animals each net captured overnight.

Nets outfitted with lights captured 63% less bycatch overall. Per species, they reduced bycatch by 51% for turtles, 81% for squid, and 95% for elasmobranchs (sharks and rays) — the last one being the most “gratifying” result for the authors, as shark bycatch in the Gulf of California is “a huge issue”.

Fish capture was not affected by the lights. However, the LEDs cut down on time wasted by fishermen on hauling and unloading bycatch, and on untangling the nets, by half. The only drawback so far, according to Senko, is the upfront installation costs of the lights: around $140 per net. Some fisheries, especially those in poorer areas such as Indonesia and the Caribbean, simply can’t afford this price per net, they add. The team is toying with using fewer lights and having them be solar-powered rather than battery-powered to reduce some of these costs. Meeting the needs of fisheries is essential for the success of this project, as they are the ones who will decide on using the LED nets or not.

Exactly why some animals seem to avoid lights, and why they do so more than others, is still up for debate. While it is possible that some species’ better eyesight helps them perceive the lights more clearly, it’s very unlikely that this is the cause — any species with sight can see these lights, after all.

The paper “Net illumination reduces fisheries bycatch, maintains catch value, and increases operational efficiency” has been published in the journal Current Biology.

share Share

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

The Earth was trembling every 90 seconds. Now, we know why.

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

Ancient Dung Reveals the Oldest Butterfly Fossils Ever Found

Microscopic wing scales bridge a 40-million-year gap in the fossil record

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.