homehome Home chatchat Notifications


LED-equipped fishing nets help protect wildlife from unintentional captures

The fish we want to capture aren't turned away by the lights.

Alexandru Micu
January 26, 2022 @ 10:37 pm

share Share

Green light-emitting diode (LED) lights can help protect wildlife from fishing nets, new research reports.

Image credits Paul Lee.

Affixing green LED lights to fishing nets can significantly reduce the catch of nontargeted animals such as sharks, squids, or turtles, according to a team led by researchers from the Arizona State University. The addition of these lights doesn’t impact the quantity or quality of desired catch species (i.e. commercially-available fish), which helps raise confidence that fisheries will adopt the measure. That being said, the installation of these lights comes with a significant upfront cost per net, which many fisheries may not be able to afford.

Beyond practical concerns, however, the findings showcase that it is possible to maintain our current fishing efficiency while insulating species that aren’t desired from capture.

Lights in the deep

Coastal fisheries routinely use gillnets, devices that resemble chain-link fences, to capture fish. These nets are deployed for up to several days at a time and capture virtually every kind of marine wildlife that cannot fit through their holes. Undesired captures (“bycatch”) are tossed overboard once the nets are recovered. These animals experience very high rates of death following this, adding up to significant pressure on marine species such as dolphins and sea turtles. It also impacts the fisheries’ bottom line, as personnel waste time removing these animals from the nets.

In other words, both business and nature lose out from the use of gillnets.

John Wang, a marine ecologist at the National Oceanic and Atmospheric Administration (NOAA), and his colleagues previously designed illuminated nets in order to protect turtles from becoming bycatch, back in 2016. Turtles seem to be particularly good at noticing green light, and these nets cut down on turtle bycatch by 64%. The current study builds on those findings, examining whether other marine animals could benefit from the same idea.

It turns out, they would. The authors worked with small-scale grouper and halibut fisheries in Baja California, Mexico, as the area is known for its large populations of turtles and other large marine species. They deployed 28 pairs of nets, one of each being equipped with groups of green LED lights every 10 meters. The team gauged their efficiency by identifying and weighing the animals each net captured overnight.

Nets outfitted with lights captured 63% less bycatch overall. Per species, they reduced bycatch by 51% for turtles, 81% for squid, and 95% for elasmobranchs (sharks and rays) — the last one being the most “gratifying” result for the authors, as shark bycatch in the Gulf of California is “a huge issue”.

Fish capture was not affected by the lights. However, the LEDs cut down on time wasted by fishermen on hauling and unloading bycatch, and on untangling the nets, by half. The only drawback so far, according to Senko, is the upfront installation costs of the lights: around $140 per net. Some fisheries, especially those in poorer areas such as Indonesia and the Caribbean, simply can’t afford this price per net, they add. The team is toying with using fewer lights and having them be solar-powered rather than battery-powered to reduce some of these costs. Meeting the needs of fisheries is essential for the success of this project, as they are the ones who will decide on using the LED nets or not.

Exactly why some animals seem to avoid lights, and why they do so more than others, is still up for debate. While it is possible that some species’ better eyesight helps them perceive the lights more clearly, it’s very unlikely that this is the cause — any species with sight can see these lights, after all.

The paper “Net illumination reduces fisheries bycatch, maintains catch value, and increases operational efficiency” has been published in the journal Current Biology.

share Share

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.