homehome Home chatchat Notifications


Kidney 3-d structures from human stem cells made for the first time

Scientists at the   Salk Institute for Biological Studies have for the first time coaxed   human stem cells into forming three-dimensional cellular structures similar to those found in our kidneys. The breakthrough could provide a valuable footing for upcoming work that might eventually lead to fully functioning lab-grown kidneys, based on patients’ own cells for bio-compatibility. In […]

Tibi Puiu
November 19, 2013 @ 12:20 pm

share Share

Scientists at the   Salk Institute for Biological Studies have for the first time coaxed   human stem cells into forming three-dimensional cellular structures similar to those found in our kidneys. The breakthrough could provide a valuable footing for upcoming work that might eventually lead to fully functioning lab-grown kidneys, based on patients’ own cells for bio-compatibility. In its current stage, lab-grown kidney-like structures such as the one developed by Salk researchers can be effectively used today as test beds for various kind of drugs.

In the U.S. alone some 4.4 million people are suffering from some form of kidney disease. Unlike other vital organs, the kidney rarely recover function once its damaged by disease; typically a transplant is required, and while treatment can alleviate symptoms and make life manageable, patients still need to make the plunge to surgery. Transplants are far too few for the current demand – growing bio-compatible kidneys would be a solution, and as you might imagine it’s an extremely challenging task.

Mouse embryonic kidney cells (seen here in red) were used  to coax the human stem cells to grow into the nascent mushroom-shaped buds (blue and green). (c) Salk Institute for Biological Studies

Mouse embryonic kidney cells (seen here in red) were used to coax the human stem cells to grow into the nascent mushroom-shaped buds (blue and green). (c) Salk Institute for Biological Studies

Previous methods have had limited success, however the present attempt successfully morphs  human stem cells into well-organized 3D structures of the ureteric bud (UB), which later develops into the collecting duct system.  Ureteric bud cells  are responsible for reabsorbing water after toxins have been filtered out and during embryonic development in the womb, later develop into a conduit for urine drainage from the kidney.  This was achieved using both human embryonic stem cells and induced pluripotent stem cells (iPSCs) – adult cells, like those harvested from the skin for instance, that are manipulated to behave like natural stem cells and thus later differentiate into any kind of cell.

[RELATED] First bio-engineered kidney works after transplant in rats 

First the researchers stimulated the stem cells or iPSCs to developed into mesoderm, a germ cell layer from which the kidneys develop using growth factors – cells that signal and offer cues to stem cells to differentiate into desired types of cells. In this instance, the researchers used mouse cells as growth factors.

The team tested their method by developing three-dimensional structures of the kidney via iPSCs harvested from  a patient clinically diagnosed with polycystic kidney disease (PKD) , a genetic disorder which can lead to kidney failure. So far, neither  gene- nor antibody-based therapies have proven to treat PKD, however using  their methodology it may be possible for pharmaceutical companies and other investigators studying drug-based therapeutics for PKD and other kidney diseases.

“Our differentiation strategies represent the cornerstone of disease modeling and drug discovery studies,” says lead study author Ignacio Sancho-Martinez, a research associate in Izpisua Belmonte’s laboratory. “Our observations will help guide future studies on the precise cellular implications that PKD might play in the context of kidney development. ”

Findings appeared in the journal Nature Cell Biology.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.