homehome Home chatchat Notifications


Jupiter's magnetic field is extremely bizarre, potentially due to unknown processes in its core

We have no idea why this happens -- but we do have hypotheses.

Alexandru Micu
September 6, 2018 @ 10:16 pm

share Share

Jupiter’s magnetic field is crazy!

Jupiter, Io.

Jupiter and Io, one of its many moons.
Image via Pixabay.

The first map of the Jovian magnetic field has been compiled by an international team of researchers — and heads are still being scratched over it. The gas giants’ magnetic field is unlike anything we’ve ever seen before, hinting at unknown processes going on beneath its surface.

King of the gods

It didn’t come as much of a surprise to any researcher that Jupiter’s magnetic field is in a class of its own. While the gas giant boasts 11 times the diameter of our planet, it’s magnetic field is over 20,000 times as strong. It’s also much larger and has several complex features that have no counterpart in our own planet’s magnetic signature. These features, as far as we can tell, may stem from Jupiter’s rapid rotation and large liquid metallic hydrogen interior.

New data beamed back by the Juno spacecraft — which is still busy orbiting around the planet’s poles — allowed researchers from the US and Denmark to study this magnetic field much more closely than ever before. Starting from this data, which was recovered during eight orbits, they mapped the magnetic field in unprecedented detail at depths up to 10,000 kilometers (6,214 miles). Instead of making things more clear, however, the wealth of data only created further confusion. Take a look:

Jupiter magnetic field.

Image credits Moore et al., 2018, Nature.

Jupiter’s magnetic field emerges from a broad area close to its North pole (red on the image above) and re-enters around the South pole — so far, not especially surprising. What is very surprising, however, is that part of the magnetic field re-enters through a highly concentrated region just south of the equator — an area the team calls the Great Blue Spot.

The field is much weaker outside of these areas (grey-blue in the image above).

Earth’s magnetic field is dipolar. The field emerges from the South pole, re-enters through the North pole, and runs through the center of the planet. There are small non-dipolar components, but they’re relatively evenly spread out across the two hemispheres and they’re nowhere near as massive as the Great Blue Spot.

None of it prepared us for Jupiter’s hectic magnetic display.

“Before the Juno mission, our best maps of Jupiter’s field resembled Earth’s field,” planetary scientist Kimberly Moore of Harvard University told Newsweek. “The main surprise was that Jupiter’s field is so simple in one hemisphere and so complicated in the other. None of the existing models predicted a field like that.”

Juptier magnetic full.

Image credits

The lop-sided nature of Jupiter’s magnetic field points to yet-undiscovered processes under the surface. Magnetic fields are the product of churning flows of conductive liquids inside a planet. As the planet rotates, these liquids create magnetic fields — just like a dynamo.

Earth’s ‘dynamo’ is encased by a solid crust; the team believes their results suggest Jupiter’s dynamo lacks this casing. One of the models they propose envisions Jupiter’s core not as a solid, but as a slush — a mixture of rock and ice partially dissolved in liquid metallic hydrogen. Such a structure could create layers that would result in an asymmetrical magnetic field, they explain.

Another possibility would be that helium rains on the planet work to destabilize the field. This scenario, however, fails to satisfactorily explain the asymmetry seen in the magnetic field.

Juno is still orbiting Jupiter and will continue for quite some time. The team hopes to use further observations to better understand the magnetic field they’ve uncovered.

The paper “A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field” has been published in the journal Nature.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.