homehome Home chatchat Notifications


New approach neutralizes influenza with modified bacteria predator membranes

The team is currently working on adapting it for use against the coronavirus.

Alexandru Micu
March 31, 2020 @ 7:30 pm

share Share

A team of German researchers has developed a new way to deal with seasonal and avian influenza viruses. Their approach involves wrapping the pathogens in chemically-modified bacteriophage capsids, rendering them unable to infect human cells.

Electron micrograph of coliphages (a type of bacteriophage) attached to a bacterial cell. Image credits: Dr Graham Beards via Wikimedia.

The team hopes their work will help usher in new treatment options against such viruses. The method was tested in the lab with very encouraging results and is currently under investigation for possible applications against the coronavirus.

Viral straightjacket

“Pre-clinical trials show that we are able to render harmless both seasonal influenza viruses and avian flu viruses with our chemically modified phage shell,” explained Professor Dr. Christian Hackenberger, Head of the Department Chemical Biology at the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Leibniz Humboldt Professor for Chemical Biology at HU Berlin. “It is a major success that offers entirely new perspectives for the development of innovative antiviral drugs.”

Current antiviral treatments only attack the influenza virus after it has infected our cells, the team reports, which is certainly useful — but preventing infection in the first place would be much more desirable and effective.

The trials — which used infected human lung tissue samples — showed that perfectly fitting a phage capsid onto these viruses can be used to neutralize their ability to infect lung cells. The capsid was specially developed by the team for this job, and works by binding itself to all the (hemagglutinin) proteins the virus can use to gain access through the membranes of human cells. During the infection process, these proteins bind to sugar molecules sprinkled through the membrane of lung tissue cells to allow entry. The core mechanism of this process, however, relies on the virus creating multiple bonds with a cell, rather than a single one.

Their quest to develop an inhibitor for these proteins started six years ago. The plan was to make such an inhibitor functionally resemble the membrane of a human lung cell. The team’s quest led them to the Q-beta phage, a harmless species of bacteriophage that lives in our intestines and usually preys on E.coli. The team removed and attached ligands (binders) to its casing — sugar molecules in this case — to act as bait binding sites for the virus’ proteins

“Our multivalent scaffold molecule is not infectious, and comprises 180 identical proteins that are spaced out exactly as the trivalent receptors of the hemagglutinin on the surface of the virus,” explained Dr. Daniel Lauster, a former Ph.D. student in the Group of Molecular Biophysics (HU) and now a postdoc at Freie Universität Berlin. “It therefore has the ideal starting conditions to deceive the influenza virus — or, to be more precise, to attach to it with a perfect spatial fit. In other words, we use a phage virus to disable the influenza virus!”

When samples of tissue infected with flu viruses were treated with the phage capsid, the influenza viruses were practically unable to reproduce. High-resolution cryo-electron microscopy and standard cryo-electron microscopy revealed that the modified capsids completely cover the viruses.

While definitely encouraging, the findings call for more preclinical studies to assess the method’s viability and safety for human use. We don’t yet know, for example, if the capsids themselves would elicit an immune response in mammals, and if such a response would enhance or impair their effect. And, of course, it has yet to be proven that the inhibitor is also effective in humans.

For now, the team is content to know that their approach has great potential and that it is “the first achievement of its kind in multivalency research,” according to Professor Hackenberger. The approach, he adds, is biodegradable, non-toxic, doesn’t cause an immune response in cell cultures, and is, at least in principle, applicable to other viruses and possibly even bacteria. The team is currently focusing on adapting it to the SARS-CoV-2 virus.

The paper “Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry” has been published in the journal Nature Nanotechnology.

share Share

After Charlie Kirk’s Murder, Americans Are Asking If Civil Discourse Is Even Possible Anymore

Trying to change someone’s mind can seem futile. But there are approaches to political discourse that still matter, even if they don’t instantly win someone over.

Climate Change May Have Killed More Than 16,000 People in Europe This Summer

Researchers warn that preventable heat-related deaths will continue to rise with continued fossil fuel emissions.

New research shows how Trump uses "strategic victimhood" to justify his politics

How victimhood rhetoric helped Donald Trump justify a sweeping global trade war

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race