homehome Home chatchat Notifications


A new study reveals why ice gets so slippery -- and it wasn't what we expected

The next time you slip on a lick of ice, at least you'll know the physics behind it!

Alexandru Micu
May 10, 2018 @ 4:28 pm

share Share

New research uncovers why ice is at its slipperiest at -7°C (19.4°F) — its all in the H bonds.

Slippery sign.

Image credits SmartSign / Flickr.

It doesn’t take a Ph.D. to know that ice gets slippery. However, understanding why your foot can’t get a grip on the frigid surface has proven much more frustrating. Our best explanation up to date was offered by John Joly, an Irish physicist and geologists, in 1886. According to his theory, when an object touches the ice surface, local contact pressure can get so high that it forces the ice into a liquid form. This thin coat of water then lubricates the ice, and off goes your foot.

The theory has survived up to today, largely in its original form. The only real amendments researchers have made to Joly’s work up to today is that the melt isn’t caused by localized pressure, but by friction between the ice and an ice skate or the sole of your boot.

Slippery when free

A new paper — published by a research team led by Prof. Daniel Bonn from the University of Amsterdam and Prof. Mischa Bonn from the Max Planck Institute for Polymer Research (MPI-P) — reports that the mechanisms involved are much more complex than so far assumed. Based on macroscopic friction experiments, they write that ice can go from an extremely slippery surface at typical cold temperatures to one with very high friction at -100°C (-148°F).

To see where this temperature-depended slipperiness comes from, the team performed spectroscopic measurements on water molecules on the surface of ice chunks. The results were then compared with computer simulations of molecular dynamics, in an effort to gauge what processes were taking place in this sheet of water.

The team reports that there are two ‘kinds’ of water molecules on the surface of the ice: one that is bound by three hydrogen bonds, and thus immobile; the second type, a mobile one, is only bound by two hydrogen bonds. The latter molecules continuously roll over the ice, like tiny bearing balls, kept in motion by thermal vibrations.

As temperatures increase, fixed water molecules progressively get converted to the mobile kind. In other words, the warmer the ice gets, the more water molecules that are used to create friction start acting like bearing balls instead. The temperature-driven change in the mobility of water molecules on the surface perfectly matches how ice’s friction coefficient changes with temperature — the more mobility at the surface, the lower the friction.

This last piece of evidence led the team to conclude that the mobility of water molecules on the surface — not the presence of the water itself — is what makes ice so slippery.

While surface mobility increases all the way up to ice’s melting point, 0°C (32°F), if you want to go for maximum slippiness, you should aim for -7°C (19.4°F). According to the team, this is the temperature point at which ice’s friction is minimal — it’s also the exact same temperature imposed at speed skating rinks.

Between -7°C and 0°C, the team further explains, any gains in surface water mobility will be offset by the ice becoming softer, causing a sliding object to dig deeper into the ice.

The paper “Molecular Insight into the Slipperiness of Ice” has been published in The Journal of Physical Chemistry Letters.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain