homehome Home chatchat Notifications


Scientists discover how ketamine is so good against depression

The team believed that ketamine affected a small part of the brain, called the lateral habenula, also known as the “anti–reward center.”

Francesca Schiopca
February 20, 2018 @ 12:20 am

share Share

Ketamine, a drug generally used for anesthesia, but also for recreational purposes, is now in the spotlight for its promising results in fighting depression. As shown in previous research, ketamine improves depression’s symptoms in a few hours, unlike the rest of anti-depressants, which may take weeks, even months to work. Scientists have now discovered exactly how ketamine so rapidly soothes depression.

Via Wikipedia

 “People have tried really hard to figure out why it’s working so fast, because understanding this could perhaps lead us to the core mechanism of depression,” says Hailan Hu, a neuroscientist at Zhejiang University School of Medicine in Hangzhou, China, and a senior author of the study.

The team believed that ketamine affected a small part of the brain, called the lateral habenula, also known as the “anti–reward center.”

If you are wondering where is the habenula – follow the yellow area in the center of the brain.
Via Wikipedia

Neurons from the lateral habenula are activated by stimuli associated with unpleasant events, like the absence of the reward or punishment, especially when these are unpredictable. To better understand how they work, here is an example: If a rat or a mouse solves a maze, it will expect some form of reward. If the rodent doesn’t get any reward, even though it had successfully completed a task, the neurons from the lateral habenula will fire, thus inhibiting the activity of the reward areas. Researchers believe that these ‘reward-negative’ neurons in the brain are overreactive in depression.

To see if their hypothesis was right, researchers designed an experiment in which they directly infused the drug into the lateral habenula of rats with depression-like symptoms. Scientists discovered that the pattern of neuronal activity, not the overall activity of the lateral habenula was a key factor in triggering depression: a percentage of the neurons in the lateral habenula fire several times in quick bursts, rather than firing once at regular intervals.

These bursts of activity in rats with symptoms of depression are absent in healthy rodents. An analysis of brain slices of healthy rats showed that they only had about 7% of these bursting type of neurons, in comparison to the depressed rodents that had almost 23% bursting neurons.

Scientists found similar results when recording the brain activity of mice: The animals who suffered stressful events had more bursting cells in the lateral habenula. After using optogenetics — a technique that allows cells to be ‘turned on or off’ with the help of light — the mice became more depressed, refusing to swim in a container of water even if forced.

But after the mice and rats were given ketamine, the number of bursting neurons became similar to the one found in healthy animals. Even when the scientists directed the neurons to fire in bursts, animals that had been administered ketamine no longer exhibited symptoms of depression.

“Anything that can block the bursting … should be a potential target based on our model,” Hu says.

In an accompanying study published at the same time in the journal Nature, the team found a protein synthesized by astrocytes (another type of brain cell that interacts closely with neurons) could be one of these targets. This molecule controls the flow of ions between a cell and its environment and it is involved in the process of resetting the nerve cell after an electrical signal, which requires regathering all the ions that flowed out of the cell during the signal.

The protein identified by the research team changes the amount of potassium available to the nerve cell, altering the cell’s ability to fire again soon. By increasing the amount of this protein, researchers were able to induce depression-like symptoms in mice.

The paper published in the journal Nature truly casts light upon the exceptional anti-depressant mechanism of ketamine, also providing us with important insight into further understanding the pathology of depression.

share Share

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

Everyone else’s opinion is secretly changing yours (and that's huge for disinformation)

Public opinion may be swaying you a lot more than you think.

Magic Mushroom Use Is Soaring in the U.S. With More Americans Turning to Psilocybin Than Cocaine or Meth

Use is up across all age groups, with rising poison calls and shifting perceptions

What happens in your brain when your mind goes completely blank — neuroscientists say it's a distinct mental state

Mind blanking isn’t daydreaming. It's something more akin to meditation — but not quite the same.