homehome Home chatchat Notifications


Defeating HIV: second patient in history goes into sustained remission after stem cell transplant

Humanity strikes back: another win against HIV.

Mihai Andrei
March 5, 2019 @ 1:33 pm

share Share

After the famous ‘Berlin patient’ ten years ago, a second person has now experienced remission from HIV. After a stem cell transplant (intended to treat cancer), the patient appeared to be HIV-free and has remained so for 18 months so far. The patient, whose case is presented in the journal Nature, is a man in the UK who has chosen to remain anonymous.

It’s a case of the “happy side effect” in a very unfortunate situation: after the patient was diagnosed with HIV in 2002, he was also diagnosed with advanced Hodgkin’s lymphoma in 2012. To treat the cancer, researchers at the University of Cambridge and University of Oxford carried out a stem cell transplant. However, just like in the case of the ‘Berlin patient’, the stem cell transplant came from donors with a protein mutation known as CCR5. HIV uses the protein to enter immune cells, but the mutated version renders the virus unable to attach itself to the cell walls — essentially protecting the body from the HIV.

The transplant proceeded without major complications. The patient also underwent chemotherapy, which can be somewhat effective against HIV as it kills cells that are dividing, but the key aspect here is the CCR5 receptor, which prevents HIV from rebounding after the treatment.

After 18 months, the patient appeared to be virus-free, although researchers are still skeptical of using the word ‘cured’.

It’s still only a sample size of two, but it’s the first time the ‘Berlin patient’ results have been replicated.

“By achieving remission in a second patient using a similar approach, we have shown that the Berlin Patient was not an anomaly, and that it really was the treatment approaches that eliminated HIV in these two people,” said the study’s lead author, Professor Ravindra Gupta (UCL, UCLH and University of Cambridge).

The study is even more exciting as reactions from the research community were very positive.

“This is good quality research and the authors used the best available technology to demonstrate with the highest degree of certainty currently possible that the patient is free of the virus,” says Prof. Áine McKnight, Professor of Viral Pathology at Queen Mary University of London.

“This is a highly significant study. After a ten year gap it provides important confirmation that the ‘Berlin patient’ was not simply an anomaly.”

Unfortunately, this is not really a scalable treatment option for HIV. Large-scale stem cell transplants would be impractical and risky. However, it represents something that might be incorporated into future treatments. Some teams are examining whether gene-therapy techniques to induce mutations on the immune system could be an option. However, there are also considerable risks, particularly when it comes to affecting other genes in detrimental ways.

Furthermore, the patient had a rare variant of HIV. There are two main variants: one uses the CCR5 co-receptor and the other uses the CXCR4 co-receptor. The vast majority of cases are in the first category, whereas this British patient fell in the second category.

“The authors clearly point out that the technique will not necessarily be effective for all HIV infected individuals, specifically those infected with CXCR4 viruses. However, the principal of targeting co-receptors may be of universal benefit,” adds McKnight.

There are currently around 37 million people living with HIV worldwide, and the only available treatment is to suppress virus — but even this treatment is only reaching 59% of the patients, and drug-resistant HIV is a growing concern. Almost one million people die annually from HIV-related causes.

“At the moment the only way to treat HIV is with medications that suppress the virus, which people need to take for their entire lives, posing a particular challenge in developing countries,” said Professor Gupta.

The study ‘HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation’ was published in Nature.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes