homehome Home chatchat Notifications


Computer simulation identifies HIV Achilles Heel, offering new avenue for treatment

It also showcases how powerful computer simulations can be in fighting viruses.

Alexandru Micu
November 10, 2017 @ 5:27 pm

share Share

A team of scientists from the University of Chicago has managed to coax out the secrets of HIV budding, offering a new avenue of combating the frightful virus.

HIV budding.

HIV budding is the last step in the virus’ cycle. From here, it’s off to invade other cells.
Image credits Voth et al., 2017, PNAS / University of Chicago.

HIV seems to have a particular regard for the Trojan horse approach to warfare. The process is known as budding and helps HIV infect cells while staying undetected by the body. After infecting a cell, the virus forces it to form a membrane capsule filled with more of the virus. When full, this capsule is released through “budding” and floats away. Upon contacting another cell, the capsule is allowed through its membrane then promptly falls apart, starting the process anew.

“[Budding is] the final step of seven steps in the HIV life cycle. During budding, immature (noninfectious) HIV pushes itself out of the host CD4 cell. (Noninfectious HIV can’t infect another CD4 cell.) Once outside the CD4 cell, the new HIV releases protease, an HIV enzyme. Protease acts to break up the long protein chains that form the noninfectious virus. The smaller HIV proteins combine to form mature, infectious HIV,” according to the U.S. Department of Health and Human Services.

However, one team of scientists at the University of Chicago is determined to take this weapon away from HIV’s arsenal. Through computer modeling, they were able to clarify previously unknown details about HIV budding. The findings could help us create a novel line of medicine to fight the virus, and offers a novel avenue of viral research in the future.

To gag a virus

It’s previously been determined that a key component of the budding process is a biochemical protein complex called Gag. However, the exact details of budding, as well as the exact structure of the Gag complex have remained largely unexplained. This prevented the development of medicine that could counteract this process.

“For a while now we have had an idea of what the final assembled structure looks like, but all the details in between remained largely unknown,” said Gregory Voth, the Haig P. Papazian Distinguished Service Professor of Chemistry and corresponding author on the paper.

Efforts to get a good image of what the protein complex looks like on a molecular level have sadly been unsuccessful so far. As such, Voth’s team turned to computer modeling to simulate Gag in action, and from there infer its properties and structure.

First, they built their model using known parts of the Gag complex. They then simulated the interactions of this model and the conditions within cells, fine-tuning it to match cellular infrastructure and synthesis capability. Progressive tweaking of the model allowed them to zero in on the most likely configuration of the protein and the process it supports.

The team then ran a battery of tests at the National Institutes of Health and the Howard Hughes Medical Institute Janelia Research Campus, overseen by co-author Jennifer Lippincott-Schwartz, to validate their findings. And it worked.

The findings offer hope that a novel range of medicine can be developed to counteract budding, severely limiting HIV’s ability to spread or remain undetected by the immune system. In concert with methods of boosting white cells’ ability to fight the virus, this could finally produce an effective, sure-fire cure against HIV.

Another exciting element of this study is that the team proved computer simulation can come in and fill the gaps in our understanding of viral mechanisms. In cases where direct observation of molecular processes just doesn’t work, this study offers a powerful precedent.

“The hope is that once you have an Achilles’ heel, you can make a drug to stop Gag accumulation and hopefully arrest the virus’s progression,” Voth says. “It really demonstrates the power of modern computing for simulating viruses.”

Next, the researchers plan to look at the Gag complex in the HIV capsules after budding, he adds.

The paper, “Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane,” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

A Provocative Theory by NASA Scientists Asks: What If We Weren't the First Advanced Civilization on Earth?

The Silurian Hypothesis asks whether signs of truly ancient past civilizations would even be recognisable today.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

Researchers engineer a fungus that kills mosquitoes during mating, halting malaria in its tracks