homehome Home chatchat Notifications


The genomes of hibernating mammals could help us fight obesity and metabolic disorders

A new study reports on 364 genetic elements that could be involved in obesity regulation.

Alexandru Micu
November 26, 2019 @ 11:10 pm

share Share

New research at the University of Utah Health is looking at hibernating animals to find new treatments for obesity and metabolic disorders that afflict millions worldwide.

The white-tailed prairie dog hibernates from mid-October to early March.
Image credits USFWS Mountain-Prairie / Flickr.

Bears and other hibernating animals build up fat when food is plentiful and then live off it in a slumber-like state during winter. Although the level of weight they gain beforehand would be considered dangerously unhealthy for a human, these animals are as fit as ever when they emerge.

The new study looks into the genetic mechanisms that allow such species to fine-tune their metabolism in a bid to gain a better understanding of human health concerns such as obesity or metabolic disorders.

Fatten up then sleep it off

“Hibernators have evolved an incredible ability to control their metabolism,” says Christopher Gregg, Ph.D., associate professor in the university’s Department of Neurology & Anatomy. “Metabolism shapes risks for a lot of different diseases, including obesity, type 2 diabetes, cancer and Alzheimer’s disease. We believe that understanding the parts of the genome that are linked to hibernation will help us learn to control risks for some of these major diseases.”

In some of their previous work, Gregg and co-author Elliot Ferris analyzed mammalian genomes for genetic regulatory elements that could explain some of the more striking biological abilities of certain species, including cancer resistance in elephants or blood clot resistance in dolphins. For the present study, they wanted to determine if hibernating species had similar switches that help them control levels of body fat.

They worked with four hibernating mammals from different habitats worldwide: the thirteen-lined ground squirrel, little brown bat, gray mouse lemur, and lesser Madagascar hedgehog tenrec. Genetic analysis showed that each species had independently evolved short bits of non-coding DNA called “parallel accelerated regions”. These bits of DNA were disproportionately located near genes that have been associated with obesity in humans, they report.

The fat-tailed dwarf lemur (Madagascar) is the only primate species known to hibernate.
Image credits Petra Lahann / Wikimedia.

To verify the link, the team analyzed genes tied to the Prader-Willi Syndrome (PWS), a genetic disorder that affects humans and triggers insatiable appetite and morbid obesity. They report that the genes linked to PWS also show more of the accelerated regions identified in hibernators compared to genes not associated with the syndrome. Based on this finding, the team believes that hibernating species have evolved ways to shut down certain genetic elements related to metabolism and fat control that non-hibernators didn’t. They hope that the results will improve our ability to evaluate and harness such metabolic leverages in humans.

All in all, the authors identified 364 genetic elements that could play a role in hibernation and obesity regulation. They are currently in the process of testing these elements using CRISPR-edited mice in their lab.

“Our results show that hibernator accelerated regions are enriched near genes linked to obesity in studies of hundreds of thousands of people, as well as near genes linked to a syndromic form of obesity,” Ferris says. Therefore, by bringing together data from humans and hibernating animals, we were able to uncover candidate master regulatory switches in the genome for controlling mammalian obesity.

While they’re focusing on metabolic processes right now, the team believes that the work they’re performing now will lead to new research directions for aging and dementia.

The paper “Parallel Accelerated Evolution in Distant Hibernators Reveals Candidate Cis-Regulatory Elements and Genetic Circuits Regulating Mammalian Obesity” has been published in the journal Cell Reports.

share Share

People Living Near Golf Courses Face Double the Risk of Parkinson’s

The strong pesticides sprayed on golf courses leech into the groundwater and scientists suspect this could increase the risk of Parkinson's.

He Let Snakes Bite Him Over 200 Times and Now Scientists Want His Blood for an Universal Antivenom

A universal snakebite treatment may be within reach, thanks to an unlikely human experiment.

These companies want to make hand bags out of T-rex leather. But scientists aren't buying it

A lab-grown leather inspired by dinosaur skin sparks excitement—and scientific skepticism

This car-sized "millipede" was built like a tank — and had the face to go with it

A Carboniferous beast is showing its face.

Climate Change Is Breaking the Insurance Industry

Climate related problems, from storms to health issues, are causing a wave of change in the insurance industry.

9 Environmental Stories That Don't Get as Much Coverage as They Should

From whales to soil microbes, our planet’s living systems are fraying in silence.

Scientists Find CBD in a Common Brazilian Shrub That's Not Cannabis

This wild plant grows across South America and contains CBD.

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

Trees sync their bioelectric signals like they're talking to each other.

The Haast's Eagle: The Largest Known Eagle Hunted Prey Fifteen Times Its Size

The extinct bird was so powerful it could kill a 400-pound animal with its talons.

Miracle surgery: Doctors remove a hard-to-reach spinal tumor through the eye of a patient

For the first time, a deadly spinal tumor has been removed via the eye socket route.