homehome Home chatchat Notifications


Too much hair, or too little? There's a single mechanism that causes both and we could fix it with meds

And in the future we should be able to control it with a pill.

Alexandru Micu
July 18, 2017 @ 6:37 pm

share Share

A biological signaling mechanism that regulates hair growth could hold the key to combat both baldness and excessive growth, a new paper reports.

Male baldness.

Via Alamy.

Turns out hairs, just like people, communicate and coordinate with each other to ensure that everybody does their job. This process is regulated by a single molecular signaling mechanism that adjusts growth by skin region to ensure no bald patches form and to dictate what hair density each area of the body gets. And again, just like people, sometimes these hairs feel the need to disconnect from all the chatter — leading to male pattern baldness or excessive hair growth.

Mice models

In an effort to pry the secrets out of this signaling mechanism, a team from the University of California-Irvine led by Maksim Plikus, assistant professor of developmental and cell biology and Qing Nie, professor of mathematics, developed and used the first mouse model of poor hair growth to analyze human-like hair behavior that leads to baldness.

The team focused their efforts on the interaction between the Wnt signaling pathway, which plays a key role in embryonic development and regeneration, and bone morphogenetic proteins (BMP), which can inhibit hair growth. Previous work has shown that the Wnt-BMP interaction can regulate hair growth in certain regions of the body, but it wasn’t understood how these regions then communicate and coordinate growth with one another.

However, laboratory experiments can fall short when trying to explain complex biological functions such as skin-wide hair growth patterns. So the team combined Nie’s lab’s expertise in mathematical modeling with the expertise in skin studies from Plikus’ lab and found that Wnt-BMP regulation dictates hair growth on every inch of skin, no matter where on the body.

“In analogy with languages spoken in two neighboring countries, it was unclear how the back skin ‘talks’ with the belly skin to coordinate the tasks of growing hairs,” Plikus said. “We showed that although different signaling ‘dialects’ may exist between belly and back skin, for instance, all hairs can understand one another through the use of similar ‘words’ and ‘sentences.'”

Understanding this signaling mechanism could help uncover the cause of human hair growth irregularities and point to possible solutions. For example, male pattern baldness usually affects the crown and frontal part of the head, but not the back. This seems to be caused by a breakdown of communication via Wnt-BMP, causing each follicle to grow independently — and not very well at that.

“If communication between nonbalding and balding regions can be reactivated, hair growth signals can then start spreading across the entire head skin, preventing regional baldness,” Plikus said.

“Just like scalp skin can show hair growth deficiency, skin in other body sites — such as the face, arms and legs — can often show excessive hair growth that can be cosmetically undesirable,” he added. “Our findings suggest that increased signaling crosstalk among hair follicles could be one major reason for this.”

The good news is that the mechanism can be re-activated and regulated with medication. The team also identified which levels of Wnt-BMP signaling promote or inhibit hair growth, providing “the road map for optimizing Wnt-BMP levels to achieve enhanced hair growth,” Plikus explains. The findings could also further our understanding of how regions of faster and slower regeneration work in coordination in other fast-renewing tissues, such as the intestines and bone marrow.

Plikus adds that their findings suggest there’s an additional signaling factor besides Wnt-BMP which handles heavy hair growth and that the team’s next step will be to identify and examine it.

The paper “A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning” has been published in the journal eLife.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics