homehome Home chatchat Notifications


Gravitational waves show us how gold is formed

I was never really a fan of gold, but knowing where it originates somehow makes it much more beautiful.

Mihai Andrei
October 17, 2017 @ 10:17 pm

share Share

It was, by far, the most spectacular discovery of 2017. Gravitational waves not only confirmed a theory proposed by Albert Einstein 100 years ago but also opened up a whole new field of observational science. But they’ve done even more: they’ve shown us how gold was formed.

Colliding worlds

Artistic depiction of spinning / colliding neutron stars. Credits: Los Alamos National Laboratory.

After astronomers observed gravitational waves coming from the collision of two black holes, they’ve now observed the same phenomenon from a different collision: between neutron stars. Neutron stars are the collapsed cores of large stars between 10 and 29 solar masses. After a massive supernova explosion which ejects most of the star’s material, the gravitational collapse compresses the core to incredible densities. Neutron stars are the smallest stars (often measuring only kilometers across), but they’re also the densest. Most models suggest that they comprise almost exclusively of neutrons — hence the name.

For the first time, scientists have observed a collision between two neutron stars. Some 130 light years away, the two stars began an unstoppable dance, drawing closer and closer to each other, until they were spinning around each other more than 500 times per second, distorting space and time as they did so.

[Read a more detailed article on this event here]

The ripples they created spread through the Universe, some of them reaching a planet we call Earth. There, scientists all over the world recorded the observation, realizing its massive importance. Andrew Levan, Professor in the Astronomy & Astrophysics group at the University of Warwick, commented:

“Once we saw the data, we realised we had caught a new kind of astrophysical object. This ushers in the era of multi-messenger astronomy, it is like being able to see and hear for the first time.”

We are made of star stuff

Type Ia-supernova. Credits: NASA.

Not only did astronomers record the gravitational waves, but they also used this event to answer several questions. Dr. Samantha Oates, also from the University of Warwick added:

“This discovery has answered three questions that astronomers have been puzzling for decades: what happens when neutron stars merge? What causes the short duration gamma-ray bursts? Where are the heavy elements, like gold, made? In the space of about a week, all three of these mysteries were solved.”

Gold, like most heavier elements, is formed through a process of stellar fusion. In the earlier stages of the universe, only lighter elements like hydrogen and helium existed (in significant quantities, at least). So where did all the others come from?

Well, the early stars burned more and more mass, fusing existing atoms and creating new ones. Going higher and higher on the periodic table, they ultimately reached heavier metals like gold and iron. In a previous article, ZME’s Tibi Puiu explains:

“Finally, as they burnt silicon to make iron, they exploded as a supernova, and for a few short moments, each star would release as much energy as all the regular stars in that galaxy put together. In that cataclysmic explosion, for the first time, atoms of gold were manufactured — and then hurled out into the Universe, along with the other debris from that explosion.”

We — and our planet — are made of star stuff. Many of the atoms that make up our own bodies were formed long ago and far away by massive stars.

A trove of findings

Scientists had a pretty good idea that this is how gold originated, but this is the first time we’ve seen it live. The neutron stars’ collision created as much gold as the mass of the Earth, and also created heavier elements such as platinum and uranium, pumping them into space.

Dr. Joe Lyman, who was watching the collision at the European Southern Observatory, was the first to alert the community of these findings, emphasizing the importance of having direct confirmation of previous theories.

“The exquisite observations obtained in a few days showed we were observing a kilonova, an object whose light is powered by extreme nuclear reactions. This tells us that the heavy elements, like the gold or platinum in jewellery are the cinders, forged in the billion degree remnants of a merging neutron star.”

I’ve never been a big fan of gold, but knowing how it’s formed somehow makes it much more beautiful. It somehow makes everything much more beautiful.

share Share

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.