homehome Home chatchat Notifications


New fossil shows when worms developed heads

Too often we take our heads for granted.

Mihai Andrei
January 23, 2018 @ 1:03 pm

share Share

A new study based on recent findings might shed a new light on annelids (ringed worms). Researchers now have solid evidence that these animals developed heads more than 500 million years ago. An extremely well-preserved fossil also suggests how the head evolved in the first place.

A fossil dating from the Cambrian, more than 500 million years ago. Note the bristles partially covering the head. Image credits: Jean-Bernard Caron/Royal Ontario Museum.

We take some of our biological features — such as the head — for granted. But five hundred million years ago, things were much more unfamiliar. Not only was the planet a completely different place, with different landscapes and atmospheric conditions, but heads were a scarce commodity. It’s not clear exactly when creatures started to evolve heads — areas of the body with concentrated sensorial functions — but some of the earliest evidence we have comes from 500 million years ago, during a period called the Cambrian.

Now, paleontologists working in Canada have found an intriguing Cambrian fossil which sheds new light on how annelids developed heads.

The fossil was found in the 508-million-year-old Marble Canyon site in the Burgess Shale in British Columbia. Burgess Shale is one of the best places for Cambrian fossils, with a long list of intriguing finds that enables us to better understand how life evolved. Now, we can add a new entry to that list: Kootenayscolex.

“508 million years ago, the Marble Canyon would have been teeming with annelids,” said Karma Nanglu, a University of Toronto PhD candidate, and a researcher at the Royal Ontario Museum, as well as the study’s lead author. “The fine anatomical details preserved in Kootenayscolex allow us to infer not only its evolutionary position, but also its lifestyle. Sediment preserved inside their guts suggest that, much as their relatives do in modern ecosystems, these worms served an important role in the food chain by recycling organic material from the sediment back to other animals that preyed on them.”

Kootenayscolex barbarensis, as its full name goes, had paired bundles of hair-sized bristles spread along the body, which allows paleontologists to positively identify it as an annelid. But unlike any other discovered fossil, these bristles were partially covering the head — specifically, the mouth. This seems to support the theory that the head evolved from posterior body segments, something which was also suggested by research on modern species.

Artistic reconstruction of how the species might have looked like. Image credits: Danielle Dufault/Royal Ontario Museum.

However, fossil evidence is extremely scarce. Since annelids are invertebrates (Kootenayscolex actually emerged as one of the first annelids), preservation of their soft bodies is extremely rare. The very process of fossilization favors the preservation of bones and other hard body parts, which makes this finding even more valuable: not only is it a rare occurrence of a preserved soft body, but it’s also caught in an important moment of its evolutionary history.

With over 17,000 extant species including ragworms, earthworms, and leeches, annelids are one of the most diverse groups on Earth. They can thrive in a variety of environments, from marine environments as distinct as tidal zones and hydrothermal vents to freshwater lakes and moist terrestrial environments. Wherever there’s some form of humidity, there’s a good chance to find an annelid. This diversity makes them an extremely interesting and important group to study, but it also makes it extremely difficult to look at the broad picture.

“Annelids are a hugely diverse group of animals in both their anatomies and lifestyles,” added Nanglu. “While this diversity makes them ecologically important and an evolutionarily interesting group to study, it also makes it difficult to piece together what the ancestral annelid may have looked like.”

The team’s research is due to be published in the journal Current Biology.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.