homehome Home chatchat Notifications


Study: Mars got its water the same place Earth did - meteorites

A study conducted by researchers from the Carnegie Institution for Science concluded that both Earth and Mars got their water from the same source chondritic meteorites. However, unlike Earth, Martian rocks containing atmospheric volatiles such as water don’t get recycled into the planet’s deep interior.   The origin, history, and evolution of Martian water are […]

Mihai Andrei
November 20, 2012 @ 8:29 am

share Share

A study conducted by researchers from the Carnegie Institution for Science concluded that both Earth and Mars got their water from the same source chondritic meteorites. However, unlike Earth, Martian rocks containing atmospheric volatiles such as water don’t get recycled into the planet’s deep interior.

 

The origin, history, and evolution of Martian water are pretty much a hot topic of debate. Although the Red Planet’s canals practically scream “we had water”, that terrain is pretty ancient, so while early Mars might have been all warm and wet, not, it’s just cold and dry.

Researchers analyzed water concentrations and hydrogen isotopic compositions trapped inside crystals within two Martian meteorites known as shergotites; one of the meteorites was rich in rich in elements such as hydrogen, and the other depleted. The two meteorites, pristine samples of various Martian volatile element environments, contain trapped basaltic liquids. However, the rich one of them has a hydrogen isotopic composition similar to that of Earth, and it appears to have changed little on its way from the Martian mantle up to the surface of Mars. The other one, however, appears to have sampled Martian crust that had been in contact with the atmosphere. So one of them had samples from the deeper parts, when Mars originally formed and had water, and the other one resembled recent Mars, with a dry environment.

“There are competing theories that account for the diverse compositions of Martian meteorites,” says researcher Tomohiro Usui. “Until this study there was no direct evidence that primitive Martian lavas contained material from the surface of Mars.”

“The hydrogen isotopic composition of the water in the enriched meteorite clearly indicates that they have been overprinted, so this meteorite tells scientists more about the Martian crust than about the Martian mantle,” he added. “Conversely, the other meteorite yields more information about the Martian interior.”

Since the hydrogen isotopic concentration was very different, the team believes that Martian surface water has had a different geologic history than water from the interior. The concentration of pure water are also very different – one of them had 10 times more water than the other one, so it’s becoming increasingly clear that Mars had two different stages in its evolution.

“To understand the geologic history of Mars, more information about both of these environments is needed,” Carnegie’s Conel Alexander said.

Via RedOrbit

share Share

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

Yeast in Space? Scientists Just Launched a Tiny Lab to See If We Can Create Food in Orbit

Microbes can brew food in space — a game-changer for astronauts.

Why Geological Maps Are the Best Investment You’ve Never Heard Of

Investments in geological mapping paid off big time for Americans.

The Mediterranean Sea Was Once Dry—Then a Gigantic Flood Changed Everything

It's probably the largest flood in our planet's history.

Bizarre Rocks in Iceland May Oddly Help Explain the Fall of Rome

The rocks are tied to the onset of a devastating mini Ice Age in the 6th century CE.

This Simple Trick Can Make Your Coffee Taste Way Better, Says Physics

If you love pour-over coffee it could serve you well to change how you pour.

A Romanian grandma used a strange rock as a doorstop for decades. It turned out to be a million-dollar relic from the age of dinosaurs

An elderly woman unknowingly held a prehistoric gem worth over $1 million in her home

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.