homehome Home chatchat Notifications


Asteroid Vesta is a lot like Earth, study shows

The cold, lifeless Vesta asteroid might be a lot more like our planet than astronomers believed – having a very active life in the early stages of the solar system evolution, a study of a Saharan meteorite shows. The planet that wasn’t Vesta might host a magmatic layer under its rocky exterior, allowing minerals to […]

Mihai Andrei
January 21, 2013 @ 4:49 pm

share Share

The cold, lifeless Vesta asteroid might be a lot more like our planet than astronomers believed – having a very active life in the early stages of the solar system evolution, a study of a Saharan meteorite shows.

The planet that wasn’t

asteorid

Vesta might host a magmatic layer under its rocky exterior, allowing minerals to travel between softer and harder layers of material, according to a study published online Sunday by the journal Nature Geoscience. If this were true, then Vesta is a lot more Earth like than previously believed.

“People think asteroids are big, gray, cold, almost potato-shaped lumps of rock that sometimes crash into the Earth and threaten us,” said study leader Beverley Tkalcec, a planetary geologist at Goethe University in Frankfurt, Germany. Instead, she said, “it has a dynamic interior similar to what might have been at the beginning of the Earth.”

Hot or not, Vesta is just big enough to have experienced melting inside. When this happens, the thicker, heavier material sinks towards the center and the lighter stuff gets pushed towards the crust. In this way, Vesta (much like its “cousin” Ceres) are planetary embryos that never really came to life, and since there are no tectonics to recirculate the rocks, the rocks are probably as old as the solar system.

The crystal and the electron

The study was conducted on a meteorite which is believed to have carved out Vesta’s mantle by impact; they made the connection between the meteorite by analysing its chemical and isotopical composition. However, unlike other studies which focus on the composition, this one focused on how the matter is distributed; if Vesta were indeed active beneath the surface and have a magmatic layer, then some clues should pop out.

The researchers used a technique called electron backscatter diffraction, in which basically electrons are bounced off crystals to determine their structure. They focused their research on a mineral called olivine (we’ve occasionally written about this mineral, see here) and found that instead of a regular pile of crystals with one sitting on top of each other, the crystal lattice was severely deformed.

olivine

Olivine crystals

They then tried to find something equivalent to this, and they found that the only rocks which resemble this type of structure is with igneous rocks formed by forces in Earth’s mantle – something which led to the natural conclusion that the meteorite is probably a result of the same process on Vesta, with the heavier elements sinking in.

They then plugged this data into a computer model of Vesta and found that, given specific conditions, the asteroid could host a magma ocean.

“When you have dense solid material over partially molten material, then it’s unstable,” said Harry McSween, a planetary geoscientist at the University of Tennessee in Knoxville and co-investigator for the Dawn mission. “The top’s trying to become the bottom and the bottom’s trying to become the top.”

Among other things, Vesta is believer to host water and have a mountain 3 times bigger than the Everest.

share Share

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

One of Earth’s rarest gems finally reveals its secrets at the Smithsonian.

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

Millions of years ago, the Atlantic Ocean split these continents but not before dinosaurs walked across them.

These Bacteria Exhale Electricity and Could Help Fight Climate Change

Some E. coli can survive by pushing out electrons instead of using oxygen

Student Finds the Psychedelic Fungus the Inventor of LSD Spent His Life Searching For

The discovery could reshape how we study psychedelic compounds in nature and medicine.

Scientists Tracked a Mysterious 200-Year-Old Global Cooling Event to a Chain of Four Volcanoes

A newly identified eruption rewrites the volcanic history of the 19th century.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.

These Galaxies are Colliding at Two Million Miles Per Hour in Deep Space

A galactic pileup 94 million light-years away is giving astronomers a detailed look at how cosmic collisions shape the universe.

Scientists Found Traces of Gold Leaking from Earth’s Core

Traces of ruthenium in Hawaiian lava reveal long-suspected core–mantle leakage.