homehome Home chatchat Notifications


Seismology could soon be used to protect elephants from poachers

It's an innovative idea that could one day be instrumental in protecting elephants.

Mihai Andrei
May 7, 2018 @ 6:26 pm

share Share

An innovative approach could help monitor elephants using earthquakes, and even protect them from poachers.

This image shows an African elephant with a visualization of the vibrations it generates, which can be used to determine its behavior. Image credits: Robbie Labanowski.

A story of elephants and earthquakes

As undergrads, we used to analyze open data from some seismographs in the city. Some were old and picked up a lot of noise and, on one of them, there was a strange wave that appeared every 10 minutes or so. It was too regular to be earthquake-related and, as it turns out, it was the local subway. Just like earthquakes, other things can generate waves that can be picked up by seismological equipment — in this case, it’s elephants.

In a new study, researchers describe how seismology could be used to track the movement of elephants, as well as their vocalizations.

The results seem to back the theory that elephants use ground vibrations for long-distance communications, but it’s surprising to see just how strong these vibrations really are.

“We were surprised by the size of the forces acting on the ground that were generated by elephants when they vocalize,” says Beth Mortimer of the Universities of Oxford and Bristol, UK. “We found that the forces generated through elephant calls were comparable to the forces generated by a fast elephant walk. This means that elephant calls can travel significant distances through the ground and, in favorable conditions, further than the distance that calls travel through the air.”

Mortimer focuses on animals that use vibrations to communicate between themselves — previously, she studied spiders and their webs but now, she’s moved to a bigger target. She believes that conservationists could ultimately design an alarm system using elephant-generated vibrations as a trigger.

Along with Will Rees, a Masters student, she recorded vibrations generated by wild elephants in Kenya while they displayed different behaviors, including walking and calling. They wanted to see how far elephant-generated vibrations travel and how they are affected by the terrain type and human noise.

They found that, under ideal conditions, the vibrations can be picked up from several kilometers away, but this varies greatly on the type of terrain and existing noise. A surprising result they gathered was that human noise can actually be very disruptive for the elephant calls — in other words, humans interfere with the elephants’ ability to communicate with each other over great distances.

But when the seismological receivers were close enough, they could be used to not only detect elephants, but also monitor their behavior and assess when they are threatened by poachers.

“We suggest that monitoring ground-based vibrations can be used in a practical context to not only detect elephants, but determine their behaviors,” Mortimer says. “Using multiple seismic recorders in remote locations, we suggest that detection, location, and classification algorithms can be generated that allow monitoring of elephants in real-time.”

However, before this can be realistically achieved, much more experimental data needs to be gathered and refined. Geophysicist Tarje Nissen-Meyer at the University of Oxford, UK, who was also involved in the study, wants to set up a larger, long-term network of seismic sensors. Along with aerial, visual, and acoustic surface sensors, a seismic network might also offer valuable information and alert park rangers when elephants are in trouble.

“We hope to build on these initial findings to develop a comprehensive approach for monitoring and understanding the behavior of large mammals in these pristine, changing, and fragile environments,” Nissen-Meyer says.

The study “Classifying elephant behaviour through seismic vibrations”, by Mortimer et al., has been published in Current Biology:  https://www.cell.com/current-biology/fulltext/S0960-9822(18)30420-2

share Share

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.