homehome Home chatchat Notifications


Martian water-ice clouds hold key to mysterious thermal rhythm

Typically on Earth, days usually have a temperature maximum somewhere after lunch, and a minimum during the night. But for Mars, things are pretty different: “We see a temperature maximum in the middle of the day, but we also see a temperature maximum a little after midnight,” said Armin Kleinboehl of NASA’s Jet Propulsion Laboratory […]

Mihai Andrei
June 13, 2013 @ 9:50 am

share Share

Typically on Earth, days usually have a temperature maximum somewhere after lunch, and a minimum during the night. But for Mars, things are pretty different:

“We see a temperature maximum in the middle of the day, but we also see a temperature maximum a little after midnight,” said Armin Kleinboehl of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., who is the lead author of a new report on these findings.temperature mars

 

Temperatures swing as much as 32 degrees Celsius (58 Fahrenheit) in this odd, bipolar type of climate – as detected by the orbiter’s Mars Climate Sounder instrument.

Global changes in wind, temperature and pressure repeating each day or fraction of a day are called atmospheric tides. Unlike oceanic tides, which are caused by gravity, atmospheric tides are caused by variation in heating between day and night. Earth has atmospheric tides as well, but they produce very little difference in the lower atmosphere. When there’s one cycle repeating throughout the day, it’s called diurnal; when it happens twice a day, it’s called semi-diurnal.

“We were surprised to find this strong twice-a-day structure in the temperatures of the non-dusty Mars atmosphere,” Kleinboehl said. “While the diurnal tide as a dominant temperature response to the day-night cycle of solar heating on Mars has been known for decades, the discovery of a persistent semi-diurnal response even outside of major dust storms was quite unexpected, and caused us to wonder what drove this response.”

But why does this happen? Kleinboehl and his team have found the answer in the water-ice clouds of Mars. The Martian atmosphere has water-ice clouds for most of the year. During daytime, equatorial clouds at 10-30 km from the ground absorb infrared light emitted from the surface during daytime. These clouds are very thin, and relatively transparent – this absorbtion is enough to heat the middle atmosphere each day. The observed semi-diurnal temperature pattern, with its maximum temperature swings occurring away from the tropics, was also unexpected, but has been replicated in Mars climate models when the radiative effects of water-ice clouds are included.

“We think of Mars as a cold and dry world with little water, but there is actually more water vapor in the Martian atmosphere than in the upper layers of Earth’s atmosphere,” Kleinboehl said. “Water-ice clouds have been known to form in regions of cold temperatures, but the feedback of these clouds on the Mars temperature structure had not been appreciated. We know now that we will have to consider the cloud structure if we want to understand the Martian atmosphere. This is comparable to scientific studies concerning Earth’s atmosphere, where we have to better understand clouds to estimate their influence on climate.”

Via NASA

share Share

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

One of Earth’s rarest gems finally reveals its secrets at the Smithsonian.

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

Millions of years ago, the Atlantic Ocean split these continents but not before dinosaurs walked across them.

Astronomers Claim the Big Bang May Have Taken Place Inside a Black Hole

Was the “Big Bang” a cosmic rebound? New study suggests the Universe may have started inside a giant black hole.

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It's At Least 25 Times Stronger Than Any Supernova

The rare blasts outshine supernovae and reshape how we study black holes.

Terraforming Mars Might Actually Work and Scientists Now Have a Plan to Try It

Can we build an ecosystem on Mars — and should we?

Scientists Tracked a Mysterious 200-Year-Old Global Cooling Event to a Chain of Four Volcanoes

A newly identified eruption rewrites the volcanic history of the 19th century.

New Simulations Suggest the Milky Way May Never Smash Into Andromeda

A new study questions previous Milky Way - Andromeda galaxy collision assumptions.