homehome Home chatchat Notifications


No evidence to say that Earth's magnetic pole is reversing, new study concludes

Magnetic poles will likely remain in place for the foreseeable future.

Mihai Andrei
April 30, 2018 @ 10:04 pm

share Share

In recent years, the scientific community has closely followed the evolution of the Earth’s magnetic field, with some scientists finding clues of a sign of an incoming magnetic pole reversal (something which also spurred a hodgepodge of conspiracy theories). However, a new study reports that what we’re seeing now is probably not a precursor of a magnetic pole reversal.

The South Atlantic Anomaly. Image credits: NASA.

The Earth’s magnetic field is crucial for life on the planet, serving as a shield against hazardous radiation from space, especially coming from the Sun. Since 1840, scientists have been consistently monitoring this magnetic field, and since then, the global strength of the magnetic field has decayed at a rate of about five percent per century. Following this continuous decrease, a significant anomaly has emerged, called the South Atlantic Anomaly.

This anomaly represents an area of an abnormally weak magnetic field — think of it as a dip in the Earth’s magnetic defenses. Here, protection from harmful radiation from space is reduced, which has several unfortunate consequences (for instance, satellites in the area are more likely to suffer from communication blackouts and passengers on flights around the area are subjected to more radiation).

Within the research community, some have interpreted this anomaly as a sign of an incoming pole reversal. If this were the case, it wouldn’t really be surprising — the Earth’s magnetic field is constantly changing, and the way which it changes also changes. As a result, in the Earth’s geological history, magnetic pole reversals have been quite common, and we know this by studying geological proxies — magnetic minerals in the rocks and sediments “record” the orientation and strength of the Earth’s magnetic field at the time of rock formation. By dating the rocks, we can know how the magnetic field evolved, and we have a pretty good idea on how this field evolved through the ages. However, we don’t really know when the next reversal will come.

[panel style=”panel-default” title=”Chrons” footer=””]The Earth’s field has alternated between periods of normal polarity, in which the predominant direction of the field was the same as the present direction, and reverse polarity, in which it was the opposite. These periods are called chrons. The duration of chrons isn’t fixed, though the average time seems to be 450,000 years. The reversals themselves typically take between 1,000 and 10,000 years. However, the last one, which happened 780,000 years ago, happened very quickly — quite possibly in less than 100 years. It’s not really possible to predict these shifts.[/panel]

 Image via Wiki Commons.

 

Within their new study, scientists have reconstructed past changes in Earth’s magnetic field using paleomagnetic data from sediment cores and volcanic rocks from across the globe. They found a specifically good record for the time interval of 50,000 to 30,000 years before the present, including two magnetic dips that are similar to the South Atlantic Anomaly.

Neither of them led to a magnetic pole reversal, and as a result, the team concludes that the current anomaly is also unlikely to lead to a pole reversal. While this doesn’t rule out the possibility of a magnetic pole reversal at some point in the near future, it makes it much less likely. Monika Korte, co-author of the study, explained:

“Based on our observations of the past 50,000 years we conclude that the South Atlantic Anomaly cannot be interpreted as a sign for the beginning of a reversal of the poles. Times of the past that, unlike the beginning of the Laschamp excursion, showed patterns of the magnetic field like today were not followed by a pole reversal. After some time the anomalies disappeared.”

 

Richard Holme, Professor of Geomagnetism at the University of Liverpool and co-author, concludes:

“There has been speculation that we are about to experience a magnetic polar reversal or excursion. However, by studying the two most recent excursion events, we show that neither bear resemblance to current changes in the geomagnetic field and therefore it is probably unlikely that such an event is about to happen.

“Our research suggests instead that the current weakened field will recover without such an extreme event, and therefore is unlikely to reverse.”

The paper, `Earth’s magnetic field is probably not reversing’ has been published in Proceedings of the National Academy of Sciences (PNAS) doi:/10.1073/pnas.1722110115.

share Share

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Are Cyborg Jellyfish the Next Step of Deep Ocean Exploration?

We still know very little about our oceans. Can jellyfish change that?

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)