homehome Home chatchat Notifications


Kabuno Bay microbes shed light on how iron deposits are formed

An isolated bay in the heart of East Africa offers scientists a glimpse into early Earth's iron-rich marine environment, and lends weight to the theory that microbial activity created some of the largest iron ore deposits billions of years ago.

Alexandru Micu
September 10, 2015 @ 1:10 pm

share Share

An isolated bay in the heart of East Africa offers scientists a glimpse into early Earth’s iron-rich marine environment, and lends weight to the theory that microbial activity created some of the largest iron ore deposits billions of years ago.

“Kabuno Bay is a time machine back to Earth’s early history when iron-rich ocean chemistry prevailed,” said Marc Llirós of the University of Namur, first author of the paper.

The unique chemical conditions of Kabunto Bay make it a great place if you’re an iron-eating bacteria.
Image via sicencedaily

The results from recent University of British Columbia (UBC) research, published this week in the journal Scientific Reports, shows how nearly 30 percent of the microbes in the Kabuno Bay area feed via a surprising process. They rely on oxidizing iron in the water for photosynthesis rather than the more wide-spread water-to-oxygen process we’re used to seeing in plants and algae.

The bay is giving us real-world insight into how ancient varieties of photosynthesis may have supported Earth’s early life prior to the evolution of the oxygen producing photosynthesis that supports life today,” said UBC geomicrobiologist Sean Crowe, senior author of the study.

Bacteria that “dine” on iron aren’t news: they were discovered since 1993; the new study however is the first to provide evidence of how these microorganisms could have played the central role in depositing our planet’s oldest iron formations.

Our planet 2.3 billion years ago was a very different place. The atmosphere was nearly bereft of oxygen and the organisms of the time (mainly bacteria) relied on other chemical processes to produce the energy they required. Scientists have suspected for a while now that due to the high content of dissolved iron in Earth’s waters at the time, iron-metabolizing microbes would have had enough food to become one of the dominant forms of life during that period. The iron they used was in turn concentrated into minerals, that settled and consolidated along the ocean floor. The sheer amount of microbes would permit very large deposits to form over time.

However, there was no evidence to back up their theory — that is, until now. The UBC study of the Kabuno Bay area found that microbes metabolize iron and grow at rates high enough to suggest that their ancient equivalents were capable of forming even the largest of today’s sedimentary iron ore deposits, known as banded iron formations.

Example of a banded iron formation. Pwetty!
Image via pbase

By oxidizing iron, these microorganisms likely helped shape the chemistry of Earth over billions of years and forged the link leading to the evolution of more complex life such as plants and animals.

share Share

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.

Women Rate Women’s Looks Higher Than Even Men

Across cultures, both sexes find female faces more attractive—especially women.

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

A digital mask restores a 15th-century painting in just hours — not centuries.

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

This nimble dinosaur may have sparked the evolution of one of the deadliest predators on Earth.

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

People still make the funniest memes but AI is catching up fast.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.