homehome Home chatchat Notifications


Researchers find that that water penetrates upper crust layer, goes down to 6-8 km

Geologists working in New Zealand have shown, through isotopic analysis, that rainwater can infiltrate down to 6-8 km, in the lower ductile crust.

Mihai Andrei
August 4, 2014 @ 3:29 am

share Share

General depiction of the crust.

Most geologists did not believe that water could penetrate into the lower ductile crust, but a new study has shown that this does indeed happen. Researchers conducted isotopic analysis on minerals brought up by tectonic uplift showed that rainwater can reach (and perhaps even surpass) the brittle ductile transition zone, at 6-8 km.

Dr. Catriona Menzies and Professor Stephen Roberts, with their team of scientists from the University of South Hampton, the University of Otago and the Scottish Universities Environmental Research Centre, conducted the analysis in New Zealand’s Southern Alps – where tectonic movement constantly pushes deeper parts of the tectonic plate upwards. These minerals carry with them a history of the fluids which passed through them, and that history can be scanned for isotopes and reconstructed. Basically, whenever a fluid passes through a rock they leave behind a tiny deposit – and that is the key here.

Geological map of New Zealand.

By identifying hydrogen and oxygen isotopes the authors mapped the water content at different depths. In the 0-2 km traces of rainwater can be easily found, but they were quite surprised to find the same thing as they went deeper and deeper – even further than 6 km. Again, they didn’t core to those depths, they just studied minerals which were at that depth and brought up by tectonic activity.

It’s also important to note that this is meteoric water – water from meteorological cycles which precipitates as rain or snow; it is not magmatic (or juvenile) water, the water present in magma since its genesis, which can only be brought up by eruptions or magma uplift.

Rainwater can play an important role in fault activation or reactivation – weakening the rocks and acting like a lubricant, so understanding how it infiltrates and what depths it reaches can improve our understanding of seismic risk and earthquake triggering. It also has interesting implications for our understanding of valuable minerals, such as gold and quartz. Furthermore, it can also play a role in orogenesis, depending on its flowpath.

*Earth and Planetary Science Letters, DOI: 10.1016/j.epsl.2014.04.046

share Share

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

Astronauts May Soon Eat Fresh Fish Farmed on the Moon

Scientists hope Lunar Hatch will make fresh fish part of space missions' menus.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.