homehome Home chatchat Notifications


Invisibility cloak to give buildings protection against earthquakes

The surface waves. Not the Love wave you want to be in.Researchers from the University of Liverpool conducted a study that shows it is possible to create what they have called an ‘invisibility cloak’ that would in fact protect buildings from earthquakes. This would come just in time, as a major earthquake threat seems more […]

Mihai Andrei
July 20, 2009 @ 3:24 pm

share Share

The surface waves. Not the Love wave you want to be in. The surface waves. Not the Love wave you want to be in.Researchers from the University of Liverpool conducted a study that shows it is possible to create what they have called an ‘invisibility cloak’ that would in fact protect buildings from earthquakes. This would come just in time, as a major earthquake threat seems more and more plausibile. In order to understand how this works, it’s important to understand how earthquakes work. To cut things short: whenever a shift or sudden move beneath the earth’s crust takes place, the energy is transmitted in the form of wave. These waves can be body waves, or surface waves. The body waves move the fastest, but the surface waves are responsible for the greater part of damage. This new technology actually controls the path of the surface waves, rendering them virtually harmless for the protected buildings.

The need for a better way of shielding against earthquakes is felt more and more; in the British suggested method, plastic concentric rings are placed in the Earth’s surface, and they divert surface waves. The waves pass through smoothly thanks to the rings’ control of stiffness and elasticity and are transformed into small non-dangerous fluctuations in pressure and density. This can be (relatively) easily applied by installing these rings into the foundation of the building.

Sebastien Guenneau, from the University’s Department of Mathematics is one of the developers of this technology, and he worked side by side with Stefan Enoch and Mohamed Farhat from the Fresnel Institute (CNRS) in Marseilles, France. He expains:

“We are able to ‘tune’ the cloak to the differing frequencies of incoming waves which means we can divert waves of a variety of frequencies. For each small frequency range, there is a pair of rings which does most of the work and these move about a lot – bending up and down – when they are hit by a wave at their frequency.

“The waves are then directed outside the cloak where they return to their previous size. The cloak does not reflect waves – they continue to travel behind it with the same intensity. At this stage, therefore, we can only transfer the risk from one area to another, rather than eliminate it completely.”

He added: “This work has enormous potential in offering protection for densely populated areas of the world at risk from earthquakes. The challenge now is to turn our theories into real applications that can save lives – small scale experiments are underway.”

So it’s very important to understand that as he states, at this point, this does nothing but protect the buildings with the rings, leaving the other ones exposed. Still, this is a breakthrough and a simple process that could prove to be quite effective in some important constructions.

share Share

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

Researchers Turned WiFi into a Medical Tool That Reads Your Pulse With Near Perfect Accuracy

Forget health trackers, the Wi-Fi in your living room may soon monitor your heartbeat.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Scientists Just Discovered a Massive Source of Drinking Water Hiding Beneath the Atlantic Ocean

Scientists drill off Cape Cod and uncover vast undersea aquifers that may reshape our water future.

This 3D printed circuit board that dissolves in water could finally solve our E-waste problem

This study is putting forward an alternative to our notoriously hard to recycle circuit boards.

Geologists Thought Rocks Take Millennia to Form. On This English Coastline, They’re Appearing in Decades

Soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A Spinning Drone Inspired by Maple Seeds Can Hover for 26 Minutes on a Single Motor

A 32-gram robot turns one of nature’s tricks into a long flight.

World's Oldest Water is 1.6 billion Years Old -- and This Scientist Tasted It

Apparently, it tastes 'very salty and bitter'.

Scientists Uncover 505-Million-Year-Old Penis Worm with a Mouthful of Bizarre Teeth

Evolution was trying things out.