homehome Home chatchat Notifications


Scientists find huge 19-mile impact crater under Greenland's ice sheet

A meteorite might have slammed into the island as early as 12,000 years ago.

Tibi Puiu
November 15, 2018 @ 4:43 pm

share Share

Researchers recently identified a huge bowl-shaped crater measuring a staggering 19 miles (31 km) across under half a mile of Greenland ice. The immense crater was likely formed by the impact of a mile-wide iron meteorite, which must have unleashed 47,000,000 times the energy of the nuclear bomb dropped on Hiroshima at the very end of WWII. The biggest question on everybody’s mind right now is when it all happened.

Illustration of newly discovered immense crater in Greenland. Credit: Nasa/Cryospheric Sciences Lab/Natural History Museum of Denmark.

Illustration of the newly-discovered immense crater in Greenland. Credit: Nasa/Cryospheric Sciences Lab/Natural History Museum of Denmark.

Kurt Kjær, a Professor at the Natural History Museum of Denmark in Copenhagen, suspected an impact crater might be hidden away under Greenland’s ice after NASA radar images showed a massive depression of the bedrock beneath the Hiawatha glacier, in the northwestern part of the island.

In May 2016, one year after the satellite images were released, scientists flew over the glacier pointing a cutting-edge ice-penetrating radar onto the glacier to map the underlying rock. The 3-D images clearly show all the hallmarks of an impact crater — a 19.3-mile-wide circular feature with a rim around it and an elevated central region.

The crater’s basin is about 300 meters deep, suggesting it was perhaps made by a one-mile-wide meteorite. This immediately classes the impact site among the top 25 largest known craters on Earth. According to the researchers, the impact would have melted and vaporized approximately ~20 km3 of rock.

“There would have been debris projected into the atmosphere that would affect the climate and the potential for melting a lot of ice, so there could have been a sudden freshwater influx into the Nares Strait between Canada and Greenland that would have affected the ocean flow in that whole region,” co-author John Paden, Associate Professor of electrical engineering and computer science at Kansas University, told the AFP.

Kurt Kjær collecting sediment samples from the crater's dranage system. Credit: Natural History Museum Denmark.

Kurt Kjær collecting sediment samples from the crater’s drainage system. Credit: Natural History Museum Denmark.

The meteorite was likely mostly made of iron, judging from geochemical tests performed on particles of shocked quarts collected from a nearby floodplain.

“Beyond the grains in the sediment sample that we interpret to be possible ejecta, no ejecta layer associated with this structure has yet been identified. Despite the absence of such additional evidence, an impact origin for the structure beneath Hiawatha Glacier is the simplest interpretation of our observations,” the authors wrote in their new study.

Black triangles represent elevated rim picks from the radargrams, and the dark purple circles represent peaks in the central uplift. Credit: Science Advances.

Black triangles represent elevated rim picks from the radargrams, and the dark purple circles represent peaks in the central uplift. Credit: Science Advances.

When exactly did the impact actually takes place is not at all certain. Kjær and colleagues are confident that the crater is no older than 3 million years, the time when ice began to cover Greenland.

“The age of this impact crater is presently unknown, but from our geological and geophysical evidence, we conclude that it is unlikely to predate the Pleistocene inception of the Greenland Ice Sheet,” the authors wrote in the journal Science Advances

As for the lower limit, radar images show that the deepest layers of the glacier that are older than 12,000 years are very deformed compared to upper layers and are filled with lumps of rock. To be sure, researchers will have to use radiometric dating techniques on material from the crater — that means drilling through half a mile of ice. It might take a few years before this happens, however.

 

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.