homehome Home chatchat Notifications


Dinosaur wipeout caused by comet, not asteroid - new study finds

The current leading theory that explains the mass extinction of the dinosaurs – once the dominant group of animals on Earth for millions of years – states that an asteroid impact some 65 million years ago brought their demise, wiping them out along with 70% of all life on the planet. A new study, however, […]

Tibi Puiu
March 25, 2013 @ 5:15 am

share Share

comet-impact-earth

The current leading theory that explains the mass extinction of the dinosaurs – once the dominant group of animals on Earth for millions of years – states that an asteroid impact some 65 million years ago brought their demise, wiping them out along with 70% of all life on the planet. A new study, however, suggests based on sedimentary analysis that the cosmic body that impacted Earth at the time may have been a comet, not an asteroid.

The site of the impact size was previously identified as being the 180 kilometers wide Chicxulub crater in Mexico. Scientists believe that a slow-moving, large asteroid created this crater, however a recent investigation that looked at other telltale signs of the impact in the Earth’s sedimentary layers suggests that the cosmic body was actually a fast-moving, low mass rock – most likely a comet.

This conclusion came after the researchers found a discrepancy in the levels of iridium and osmium. These two elements can be found on the same worldwide layer of sediments, called the Cretaceous-Paleogene (K-Pg) boundary, and have been found to reside in much greater concentrations than those of other sedimentary layers, meaning they must have come from outer space.  After comparing the two, the scientists suggest the collision deposited less debris than has previously been supposed.

So, this means that the cosmic body had a much smaller mass than it is currently believed. At the same time, the huge 180 km-wide crater in Mexico could have only been created by a high velocity impact in order for the same amount of energy to be displaced. Comets, which are huge bodies of ice, dust and rocky particles, become thus the likeliest candidates since they travel at faster velocities than asteroids through the solar system.

“You’d need an asteroid of about 5km diameter to contribute that much iridium and osmium. But an asteroid that size would not make a 200km-diameter crater,” said ” Jason Moore, from Dartmouth College in New Hampshire.

“So we said: how do we get something that has enough energy to generate that size of crater, but has much less rocky material? That brings us to comets.”

A comet instead of an asteroid?

The findings however are far form being solid, and as one can imagine the study was met with skepticism by the geology and paleontology scientific community.

 “There’s a possibility that a lot of the impacted material could have been ejected at escape velocity, so we couldn’t find it on Earth,” said  physicist Brandon Johnson of Purdue University, who was not involved in the research.

Geologist Gareth Collins of Imperial College London, U.K., agreed. “Geochemistry tells you — quite accurately — only the mass of meteoritic material that is distributed globally, not the total mass of the impactor,” Collins said, adding, “To estimate the latter, one needs to know what fraction of the impactor was distributed globally, as opposed to being ejected to space or landing close to the crater.”

The findings presented by the team lead by Dr. Moore rest on a rather fragile string. At the basis of their conclusions lies this previously mentioned correlation between the displaced debris and cosmic rock size. Collins believes that the debris distributed on Earth could have been less than 20% of the body’s mass, instead of 75% as the comet impact favoring researchers presume. In response, the authors  cite recent studies suggesting mass loss for the Chicxulub impact was between 11% and 25%.

The findings were presented at the 44th Lunar and Planetary Science Conference.

share Share

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

One of Earth’s rarest gems finally reveals its secrets at the Smithsonian.

Fish Feel Intense Pain For 20 Minutes After Catch — So Why Are We Letting Them Suffocate?

Brutal and mostly invisible, the way we kill fish involves prolonged suffering.

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

Millions of years ago, the Atlantic Ocean split these continents but not before dinosaurs walked across them.

Scientists Tracked a Mysterious 200-Year-Old Global Cooling Event to a Chain of Four Volcanoes

A newly identified eruption rewrites the volcanic history of the 19th century.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.

Scientists Found Traces of Gold Leaking from Earth’s Core

Traces of ruthenium in Hawaiian lava reveal long-suspected core–mantle leakage.

This beautiful rock holds evidence of tsunamis from 115 million years ago

The waves that shook the world 115 million years ago left behind an amber trail.

Meet Mosura fentoni, the Bug-Eyed Cambrian Weirdo with Three Eyes and Gills in Its Tail

Evolution went strong in this one.

Antarctica has a huge, completely hidden mountain range. New data reveals its birth over 500 million years ago

Have you ever imagined what Antarctica looks like beneath its thick blanket of ice? Hidden below are rugged mountains, valleys, hills and plains. Some peaks, like the towering Transantarctic Mountains, rise above the ice. But others, like the mysterious and ancient Gamburtsev Subglacial Mountains in the middle of East Antarctica, are completely buried. The Gamburtsev […]