homehome Home chatchat Notifications


Earth’s most abundant mineral finally gets a name

What’s the most common mineral on Earth? Is it quartz, limestone? Maybe olivine? Well, if you take into consideration the entire planet, the most common mineral would be something known as silicate-perovskite – but now, that mineral finally has a name. On June 2, bridgmanite was approved as the formal name for silicate-perovskite – possibly of the Earth’s […]

Mihai Andrei
June 9, 2014 @ 7:40 pm

share Share

What’s the most common mineral on Earth? Is it quartz, limestone? Maybe olivine? Well, if you take into consideration the entire planet, the most common mineral would be something known as silicate-perovskite – but now, that mineral finally has a name.

A sample of the 4.5 billion-year-old Tenham meteorite that contains submicrometer-sized crystals of bridgmanite. Yes, it’s that really small thing.

On June 2, bridgmanite was approved as the formal name for silicate-perovskite – possibly of the Earth’s most plentiful yet elusive mineral known to exist in the Earth’s lower mantle, between 670 and 2,900 kilometers (416 and1,802 miles). . The name was given in honor of 1946 Nobel Prize winning physicist Percy Bridgman, honoring his researches concerning the effects of high pressures on materials and their thermodynamic behaviour.

You won’t find any bridgmanite on the surface, as the mineral naturally exists only in the lower part of the mantle (which is made 93% from it). Scientists have known (or had very strong theories regarding its existence) for decades, but were unable to find a surface sample, until this year.

“This [find] fills a vexing gap in the taxonomy of minerals,” Oliver Tschauner, an associate research professor at the University of Nevada-Las Vegas who characterized the mineral, said in an email.

Tschauner worked with his colleague, Chi Ma, a senior scientist and mineralogist at the California Institute of Technology in Pasadena, Calif., to characterize the structure of silicate-perovskite since 2009. However, this year they made a big breakthrough, after analyzing a meteorite which fell in Australia in 1879. The meteorite formed 4.5 billion years ago, and was “highly shocked”.

“Shocked meteorites are the only accessible source of natural specimens of minerals that we know to be rock-forming in the transition zone of the Earth,” said Tschauner.

After throughly analyzing it with every available technique, they were finally able to find the bridgmanite veins in the meteorite. Thus, confirming decades of research, they were also able to submit an official name for the mineral, which they did in March 2014.

“We are glad no one used [Bridgman] for other minerals,” said Ma, “this one is so important.”

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.