homehome Home chatchat Notifications


Earth’s most abundant mineral finally gets a name

What’s the most common mineral on Earth? Is it quartz, limestone? Maybe olivine? Well, if you take into consideration the entire planet, the most common mineral would be something known as silicate-perovskite – but now, that mineral finally has a name. On June 2, bridgmanite was approved as the formal name for silicate-perovskite – possibly of the Earth’s […]

Mihai Andrei
June 9, 2014 @ 7:40 pm

share Share

What’s the most common mineral on Earth? Is it quartz, limestone? Maybe olivine? Well, if you take into consideration the entire planet, the most common mineral would be something known as silicate-perovskite – but now, that mineral finally has a name.

A sample of the 4.5 billion-year-old Tenham meteorite that contains submicrometer-sized crystals of bridgmanite. Yes, it’s that really small thing.

On June 2, bridgmanite was approved as the formal name for silicate-perovskite – possibly of the Earth’s most plentiful yet elusive mineral known to exist in the Earth’s lower mantle, between 670 and 2,900 kilometers (416 and1,802 miles). . The name was given in honor of 1946 Nobel Prize winning physicist Percy Bridgman, honoring his researches concerning the effects of high pressures on materials and their thermodynamic behaviour.

You won’t find any bridgmanite on the surface, as the mineral naturally exists only in the lower part of the mantle (which is made 93% from it). Scientists have known (or had very strong theories regarding its existence) for decades, but were unable to find a surface sample, until this year.

“This [find] fills a vexing gap in the taxonomy of minerals,” Oliver Tschauner, an associate research professor at the University of Nevada-Las Vegas who characterized the mineral, said in an email.

Tschauner worked with his colleague, Chi Ma, a senior scientist and mineralogist at the California Institute of Technology in Pasadena, Calif., to characterize the structure of silicate-perovskite since 2009. However, this year they made a big breakthrough, after analyzing a meteorite which fell in Australia in 1879. The meteorite formed 4.5 billion years ago, and was “highly shocked”.

“Shocked meteorites are the only accessible source of natural specimens of minerals that we know to be rock-forming in the transition zone of the Earth,” said Tschauner.

After throughly analyzing it with every available technique, they were finally able to find the bridgmanite veins in the meteorite. Thus, confirming decades of research, they were also able to submit an official name for the mineral, which they did in March 2014.

“We are glad no one used [Bridgman] for other minerals,” said Ma, “this one is so important.”

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.