homehome Home chatchat Notifications


Scientists find life at 20 km deep

A Yale undergrad may force us to rewrite geology and biology books, after reporting a find which suggests that life can exist much deeper than currently believed, at temperatures at which DNA is barely stable. Geologists found carbon isotopes in rocks on Washington state’s South Lopez Island; these isotopes suggest the minerals grew from fluids flush […]

Dragos Mitrica
October 29, 2014 @ 12:31 am

share Share

A Yale undergrad may force us to rewrite geology and biology books, after reporting a find which suggests that life can exist much deeper than currently believed, at temperatures at which DNA is barely stable.

Photo credit: Philippa Stoddard. A hundred million years ago this outcrop is thought to have been 20km down, yet it still contains evidence of life.

Geologists found carbon isotopes in rocks on Washington state’s South Lopez Island; these isotopes suggest the minerals grew from fluids flush with microbial methane. Microbial methane has a very distinct chemical signature and can be discerned with relative ease from non-organic methane. At the time microbes lived in this environment, the rocks were buried 20 km deep.

At the Geological Society of America’s annual meeting, Yale undergraduate student Philippa Stoddard reported on the discovery of aragonite in the San Juan Islands, Washington State. Aragonite is a carbonate mineral, one of the two common, naturally occurring, crystal forms of calcium carbonate, CaCO3 (the other form being the mineral calcite). There are pale veins of aragonite cutting through basalt rocks that sat offshore North America millions of years ago. Stoddard found an outcrop where aragonite veins have anomalously light concentrations of carbon isotopes, with up to 50 fewer heavy isotopes per million atoms. This is the key signature which suggests that the methane was released by microorganisms.

“We propose that the aragonite veins were formed by oxidation of methane. The degree of oxidation was variable, as indicated by the wide range of carbon isotope values. If correct, then the lightest carbon values would represent the isotopic composition of the methane. At low surface pressures, bacterial life is know to remain active to temperatures of ~122 C. Biomolecules are stabilized by pressure, so bacterial life should extend to higher temperatures within the Earth’s interior. We suggest that the Lopez Island aragonite veins are evidence of this deep life”, the study writes.

The fact that microorganisms could survive at those depths is truly remarkable. If we consider that the average geothermal gradient is about 25 degrees Celsius per 1 km (1 °F per 70 feet of depth), then at 20 km you get almost 500 degrees! Arguably, you could say that the geothermal gradient was a bit more mellow in that area (though that’s still not clear yet), but we’re still dealing in the hundreds of degrees Celsius here – at those temperatures, DNA itself is barely stable.

Stoddard and her collaborators plan to sample more aragonite samples from the area to see if this was an anomalous concentration (or perhaps a measuring error), or if the same thing can be found throughout more outcrops. Geologists also have to better understand the thermal environment which may have allowed microbes to survive at that depth.

“We reason that you could have life deeper in subduction zones, because you have a lot of water embedded in those rocks, and the rocks stay cold longer as the [plate] comes down,” Stoddard said.

That’s definitely a possibility, but still not a proven fact.

share Share

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

50 years later, Vietnam’s environment still bears the scars of war – and signals a dark future for Gaza and Ukraine

When the Vietnam War finally ended on April 30, 1975, it left behind a landscape scarred with environmental damage. Vast stretches of coastal mangroves, once housing rich stocks of fish and birds, lay in ruins. Forests that had boasted hundreds of species were reduced to dried-out fragments, overgrown with invasive grasses. The term “ecocide” had […]

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Small solar farms could deliver big ecological and energy benefits, researchers find.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.