homehome Home chatchat Notifications


Earth's core is a lot like oil and vinegar -- in a way

Our planet is one big salad.

Mihai Andrei
May 6, 2019 @ 10:00 pm

share Share

What does salad dressing have to do with the core of our planet? Quite a bit, according to a new study, and it’s got a lot to do with the Earth’s magnetic field.

A laser-heated diamond anvil cell is used to simulate the pressure and temperature conditions of Earth’s core. Top right inset shows a scanning electron microscope image of a quenched melt spot with immiscible liquids. Image credits: Sarah M. Arveson / Yale University.

Earth’s magnetic field, produced near the center of the planet, is essential to the survival of all life on the planet, acting as a protective shield from the harmful radiation of solar winds emanating from the Sun. However, our knowledge of Earth’s magnetic field and its evolution is incomplete. A new study finds that this evolution might have a lot to do with a process called immiscibility.

Miscibility is the property of two substances to mix, forming a homogeneous solution. When two substances are immiscible, they don’t mix — think of oil and water or oil and vinegar, for instance. Yale associate professor Kanani K.M. Lee and her team published a new study which suggests that molten iron alloys containing silicon and oxygen form two distinct liquids in the Earth’s core — two immiscible fluids, which just don’t mix together.

“We observe liquid immiscibility often in everyday life, like when oil and vinegar separate in salad dressing. It is surprising that liquid phase separation can occur when atoms are being forced very close together under the immense pressures of Earth’s core,” said Yale graduate student Sarah Arveson, the study’s lead author.

We’ve known for quite a while that the outer core has two major layers. Seismic waves traveling through the outer part of the outer core move slower than in the inner parts. Scientists have several theories explaining what is causing this slower layer, including immiscible fluid. However, until now, there was no experimental evidence to support this idea. In the new study, Lee and colleagues used laser-heated, diamond-anvil cell experiments to generate high pressures and temperatures, mimicking the conditions of the outer core. They found that under these conditions, two distinct, molten fluid layers are formed: an oxygen-poor, iron-silicon fluid and an iron-silicon-oxygen fluid. Because the iron-silicon-oxygen layer is less dense, it rises to the top, forming an oxygen-rich layer of fluid.

“Our study presents the first observation of immiscible molten metal alloys at such extreme conditions, hinting that immiscibility in metallic melts may be prevalent at high pressures,” said Lee.

This is important for the Earth’s magnetic field because most of it is believed to be generated in this outer core as the hot fluid in this layer roils vigorously as it convects.

This still doesn’t completely solve the puzzle of our planet’s magnetic field, but it offers an important puzzle piece.

The study has been published in the Proceedings of the National Academy of Sciences

share Share

What's Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

This season doesn’t have to be about comparison or self-criticism.

Why a 20-Minute Nap Could Be Key to Unlocking 'Eureka!' Moments Like Salvador Dalí

A 20-minute nap can boost your chances of a creative breakthrough, according to new research.

The world's oldest boomerang is even older than we thought, but it's not Australian

The story of the boomerang goes back in time even more.

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

The "search-and-destroy” microrobot system can chemically shred the resident bacterial biofilm.

What if Every Roadkill Had a Memorial?

Road ecology, the scientific study of how road networks impact ecosystems, presents a perfect opportunity for community science projects.

Fireball Passes Over Southeastern United States

It’s a bird! It’s a plane! It’s… a bolide!

What side do cats prefer to sleep on? The left side, and there's a good reason for that

The fluffier side of science.

This Bear Lived Two Years With a Barrel Lid Stuck on Its Neck Before Finally Being Freed

A Michigan bear wore a plastic ring for two years. Somehow, it’s doing just fine.

The James Webb telescope just found a planet by actually ‘seeing’ it

It's exactly what we were hoping from JWST.

Is Being Filthy Rich Immoral? It Depends Who You Ask

The world's 8 richest people have more wealth than the poorest few billion.