homehome Home chatchat Notifications


Bacteria's social lives influence how they develop drug resistance

Judging by the findings, I should be completely drug-resistant forever.

Alexandru Micu
October 23, 2019 @ 3:07 pm

share Share

How bacteria live influences how they develop antibiotic resistance, a new study reports.

Independent and communal bacteria react differently to antibiotics and develop resistance to medicine in different ways, according to researchers at the University of Pittsburgh School of Medicine. The findings could help shape more efficient methods of infection control and antimicrobial therapies.

Together we stand

“What we’re simulating in the lab is happening in the wild, in the clinic, during the development of drug resistance,” said senior author Vaughn Cooper, Ph.D., director of the Center for Evolutionary Biology and Medicine at Pitt. “Our results show that biofilm growth shapes the way drug resistance evolves.”

According to study lead author Alfonso Santos-Lopez, Ph.D., the results could be used to find a chink in the armor of drug-resistant bacteria.

For the study, the team repeatedly exposed bacterial cultures to ciprofloxacin (a broad-spectrum antibiotic) to force them to develop resistance — and they did. However, the team was surprised to see that the ‘lifestyle’ of individual species led to them developing specific mechanisms for drug resistance.

The paper showcases the role “collateral sensitivity” can play in our fight against drug-resistant pathogens. In simple terms, when bacteria evolve to be more resistant to one drug or class of drugs, this can make them vulnerable to other antibiotics. If you know which drug that is, then you have an effective tool against the bugs.

In the team’s experiment, communal bacterias — which bunch together into biofilms — that developed resistance to ciprofloxacin also lost virtually all resistance to the cephalosporin class of antibiotics. In contrast, free-floating (individual) bacteria didn’t become susceptible to cephalosporins and developed, on average, 128 times the resistance to ciprofloxacin of the biofilm-grown bacteria.

“Biofilms are a more clinically relevant lifestyle,” said study coauthor Michelle Scribner, a doctoral student in Cooper’s lab. “They’re thought to be the primary mode of growth for bacteria living in the body. Most infections are caused by biofilms on surfaces.”

The paper “Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle” has been published in the journal eLife.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.