homehome Home chatchat Notifications


A drone-flying software outperforms human pilots for the first time

It's not ready for commercial applications, but the potential is there.

Alexandru Micu
July 26, 2021 @ 10:39 am

share Share

The rise of the machines won’t be as dramatic as those in Terminator or the Animatrix if people can simply outrun the murderbots. And, currently, we can do that quite comfortably. Some robots can walk, some can run, but they tend to fall over pretty often, and most are not that fast. Autonomous flying drones are also having a very hard time keeping up with human-controlled ones, as well.

Image credits  Robotics and Perception Group, University of Zurich.

New research at the University of Zurich, however, might finally give robots the edge they need to catch up to their makers — or, at least, give flying drones that edge. The team developed a new algorithm that calculates optimal trajectories for each drone, taking into account their individual capabilities and limitations.

Speed boost

“Our drone beat the fastest lap of two world-class human pilots on an experimental race track,” says Davide Scaramuzza, who heads the Robotics and Perception Group at UZH and corresponding author of the paper.”The novelty of the algorithm is that it is the first to generate time-optimal trajectories that fully consider the drones’ limitations”.

“The key idea is, rather than assigning sections of the flight path to specific waypoints, that our algorithm just tells the drone to pass through all waypoints, but not how or when to do that,” adds Philipp Foehn, Ph.D. student and first author of the paper.

Battery life is one of the most stringent constraints drones today face. Because of this, they need to be fast. The approach their software uses today is to break down their flight route into a series of waypoints and then calculate the best trajectory, acceleration, and deceleration patterns needed over each segment.

Previous drone piloting software relied on various simplifications of the vehicle’s systems — such as the configuration of its rotors or flight path — in order to save on processing power and run more smoothly (which in turn saves on battery power). While practical, such an approach also produces suboptimal results, in the form of lower speeds, as the program works with approximations.

I won’t go into the details of the code here, mainly because I don’t understand code. But results-wise, the drone was pitted against two human pilots — all three navigating the same quadrotor drone — through a race circuit, and came in first place. The team set up cameras along the route to monitor the drones’ movements and to feed real-time information to the algorithm. The human pilots were allowed to train on the course before the race.

In the end, the algorithm was faster than the pilots on every lap, and its performance was more consistent between laps. The team explains that this isn’t very surprising, as once the algorithm identifies the best path to take, it can reproduce it accurately time and time again, unlike human pilots.

Although promising, the algorithm still needs some tweaking. For starters, it consumes a lot of processing power right now: it took the system one hour to calculate the optimal trajectory for the drone. Furthermore, it still relies on external cameras to keep track of the drone, and ideally, we’d want onboard cameras to handle this step.

The paper “Time-optimal planning for quadrotor waypoint flight” has been published in the journal Science Robotics.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.