homehome Home chatchat Notifications


A drone-flying software outperforms human pilots for the first time

It's not ready for commercial applications, but the potential is there.

Alexandru Micu
July 26, 2021 @ 10:39 am

share Share

The rise of the machines won’t be as dramatic as those in Terminator or the Animatrix if people can simply outrun the murderbots. And, currently, we can do that quite comfortably. Some robots can walk, some can run, but they tend to fall over pretty often, and most are not that fast. Autonomous flying drones are also having a very hard time keeping up with human-controlled ones, as well.

Image credits  Robotics and Perception Group, University of Zurich.

New research at the University of Zurich, however, might finally give robots the edge they need to catch up to their makers — or, at least, give flying drones that edge. The team developed a new algorithm that calculates optimal trajectories for each drone, taking into account their individual capabilities and limitations.

Speed boost

“Our drone beat the fastest lap of two world-class human pilots on an experimental race track,” says Davide Scaramuzza, who heads the Robotics and Perception Group at UZH and corresponding author of the paper.”The novelty of the algorithm is that it is the first to generate time-optimal trajectories that fully consider the drones’ limitations”.

“The key idea is, rather than assigning sections of the flight path to specific waypoints, that our algorithm just tells the drone to pass through all waypoints, but not how or when to do that,” adds Philipp Foehn, Ph.D. student and first author of the paper.

Battery life is one of the most stringent constraints drones today face. Because of this, they need to be fast. The approach their software uses today is to break down their flight route into a series of waypoints and then calculate the best trajectory, acceleration, and deceleration patterns needed over each segment.

Previous drone piloting software relied on various simplifications of the vehicle’s systems — such as the configuration of its rotors or flight path — in order to save on processing power and run more smoothly (which in turn saves on battery power). While practical, such an approach also produces suboptimal results, in the form of lower speeds, as the program works with approximations.

I won’t go into the details of the code here, mainly because I don’t understand code. But results-wise, the drone was pitted against two human pilots — all three navigating the same quadrotor drone — through a race circuit, and came in first place. The team set up cameras along the route to monitor the drones’ movements and to feed real-time information to the algorithm. The human pilots were allowed to train on the course before the race.

In the end, the algorithm was faster than the pilots on every lap, and its performance was more consistent between laps. The team explains that this isn’t very surprising, as once the algorithm identifies the best path to take, it can reproduce it accurately time and time again, unlike human pilots.

Although promising, the algorithm still needs some tweaking. For starters, it consumes a lot of processing power right now: it took the system one hour to calculate the optimal trajectory for the drone. Furthermore, it still relies on external cameras to keep track of the drone, and ideally, we’d want onboard cameras to handle this step.

The paper “Time-optimal planning for quadrotor waypoint flight” has been published in the journal Science Robotics.

share Share

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

50 years later, Vietnam’s environment still bears the scars of war – and signals a dark future for Gaza and Ukraine

When the Vietnam War finally ended on April 30, 1975, it left behind a landscape scarred with environmental damage. Vast stretches of coastal mangroves, once housing rich stocks of fish and birds, lay in ruins. Forests that had boasted hundreds of species were reduced to dried-out fragments, overgrown with invasive grasses. The term “ecocide” had […]

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Small solar farms could deliver big ecological and energy benefits, researchers find.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.