homehome Home chatchat Notifications


Desert beetle and cactus inspire material that collects water from the air

One group combined water collecting traits from the awesome Namib desert beetle, cactus and pitcher plant to devise a material that seemingly makes water out of thin air.

Tibi Puiu
February 29, 2016 @ 6:13 pm

share Share

In the scorching desert, there’s nothing more valuable than water. Since evolution fosters those who survive and carry on their genes, there are numerous animals and plants that have adapted even to the driest places. It makes sense for us to exploit all these millions of years worth of work on nature’s part. One group combined water-collecting traits from the awesome Namib desert beetle with cactus and pitcher plant to devise a material that seemingly makes water out of thin air.

water droplets

Image: waterdroplets growing faster on the apex of the bumps compared to a flat region with the same height. Credit: Aizenberg Lab/Harvard SEAS

Previously, ZME Science reported how the Namib desert beetle’s unique shell structure inspired researchers to make an aerospace material that doesn’t build frost. Now, its  bumpy shell along with other traits like the spines of cactuses and slippery surfaces of pitcher plants have been incorporated into a material with unprecedented properties.

Bumpy surface (left) collected a lot more water at the bottom than an unaltered surface (right). Credit: Aizenberg Lab/Harvard SEAS

The bumpy surface (left) collected a lot more water at the bottom than the unaltered surface (right). Credit: Aizenberg Lab/Harvard SEAS

The material’s surface has asymmetric 0.9-millimeter-tall mounds which promote the condensation of water vapor into droplets. These roll of a side-ramp modeled after the water droplet-guiding concavity of cactus spines. Finally, nano-pores akin to those found in the  friction-free coatings of pitcher plants help the surface be more slippery.

How asymmetric bumps can be used to guide droplets to a desired location. Credit: Aizenberg Lab/Harvard SEAS

How asymmetric bumps can be used to guide droplets to a desired location. Credit: Aizenberg Lab/Harvard SEAS

The tech developed at Harvard University is very efficient at not only collecting condensed droplets, but also moving them away. In applications with heavy use of heat exchange, this could prove particularly useful.

“Forming droplets that can shed off of the surface is very important because it takes heat away immediately. The amount of water collected will be proportional to the heat that’s taken away from the surface,” says Tak-Sing Wong, a materials scientist at Pennsylvania State University who is designing his own bio-inspired slippery-surfaces, but was not part of the Harvard study.

The same bio-inspired coating could make refrigerators 30% more energy efficient.

Findings appeared in the journal Nature.

share Share

A London Dentist Just Cracked a Geometric Code in Leonardo’s Vitruvian Man

A hidden triangle in the vitruvian man could finally explain one of da Vinci's greatest works.

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

The spacecraft crashed into the Pacific Ocean after a parachute failure, ending a bold experiment in space biology and memorial spaceflight.

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

The zombie fungus from the age of the dinosaurs.

Your browser lets websites track you even without cookies

Most users don't even know this type of surveillance exists.

What's Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

This season doesn’t have to be about comparison or self-criticism.

Why a 20-Minute Nap Could Be Key to Unlocking 'Eureka!' Moments Like Salvador Dalí

A 20-minute nap can boost your chances of a creative breakthrough, according to new research.

The world's oldest boomerang is even older than we thought, but it's not Australian

The story of the boomerang goes back in time even more.

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

The "search-and-destroy” microrobot system can chemically shred the resident bacterial biofilm.