homehome Home chatchat Notifications


Your cutlery could soon be made from durable, sustainable sugar and wood powders

We need a sustainable replacement for plastic as soon as possible.

Mihai Andrei
April 18, 2023 @ 1:45 am

share Share

You’re not made of sugar — but these utensils are, and they could help the environment.

Pictures of cutlery made of sugar
Sturdy objects made from sugar and wood-derived powders (shown here) will disintegrate once they’re crushed and sprayed with water. Image credits: American Chemical Society.

A whopping 300 million tons of plastic are produced every 12 months, and the figure only increases year after year. Half of that is single-use plastics, and in the US alone, a whopping 40 billion pieces of plastic cutlery are discarded every year after a single use. Needless to say, this is turning into a major environmental problem.

Thankfully, researchers have gotten much better at producing plastic alternatives. The initial versions of these replacements were flimsy, expensive, and tricky to produce, but increasingly, researchers are developing cost-effective, sustainable alternatives.

Take for instance cornstarch-based packing. The packing mimics single-use plastic wrapping, but simply douse it in water and it dissolves, leaving no polluting trace behind.

Some utensils are also based on sugar polymers, but using sugar alone can be pretty tricky. Sugar-based materials tend to dissolve in water, which makes them excellent from a biodegradable standpoint, but less good if you want to produce tools that are constantly in contact with liquids — something like a spoon or a fork. Boise University professor Scott Phillips took inspiration from one particular type of sugar: isomalt.

Isomalt a sugar substitute, and it’s one of the sugar replacements that has no effect on blood sugar levels. It is also one of the things that bakers use to create decorations for desserts. But isomalt is brittle and it melts, so Phillips and colleagues wanted to see if it’s possible to make it sturdier somehow.

They zoomed in on wood-based additives. They heated isomalt until it became a liquid and then added either cellulose, cellulose and sawdust, or wood flour to produce three different materials.

They then used commercial plastic manufacturing equipment to turn the resulting mixture into various objects — saucers, geometrical objects, and even chess pieces.

All the resulting materials were harder than plastics but still lightweight. They still dissolved in water, however. So the researchers coated them with a food-grade shellac and cellulose acetate, after which they withstood being submerged for seven days. However, if you want to dissolve the objects faster, all you need to do is break them and allow the water to infiltrate the material.

There’s another advantage: the objects can be repeatedly crushed and dissolved and recycled and made into new objects — the resulting objects are just as strong and durable as the original ones.

Some of the products created with this method.

This seems to hit the nail on the head when it comes to what you want for single-use (or even repeated-use) cutlery and other utensils. You have durable objects that are lightweight, made from sustainable materials, and can be recycled indefinitely. Even if they end up in landfills or in the sea, they can be easily absorbed into the environment.

“Like plastics, this class of materials is lightweight and can be produced efficiently at low temperatures via injection molding, yet the materials emulate the rigidity and strength of ceramics and stones. Repeated recycling is achieved via a closed-loop process without degradation of the isomalt binder and without loss of mechanical properties,” the researchers write in the study.

Whether or not this type of material will become commonplace, however, will fall down to production cost and scalability. Plastic is still very cheap and the market inertia favors the products that are dominating. However, as more and more countries are implementing plastic taxes or bans, this type of material could become favored much faster.

Journal Reference:  Terra Miller-Cassman et al, Amorphous Sugar Materials as Sustainable and Scalable Alternatives for Rigid, Short-Term-Use Products, ACS Sustainable Chemistry & Engineering (2023). DOI: 10.1021/acssuschemeng.2c06981.

share Share

Dinosaur Teeth Help Scientists Recreate the Air Dinosaurs Once Breathed

Dinosaurs inhaled air with four times more CO2 than today.

Coastal Flooding Is Much Worse Than Official Records Show — and No One’s Measuring It

There were big flaws in how we estimated floods in coastal communities.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

Huge Centuries-Old Human Figures Carved in Sandstone Are Suddenly Visible Again on Hawaii Beach

Beneath the shifting sands of an Oahu beach, ancient carvings — hidden for years — have suddenly reemerged.

A Popular Artificial Sweetener Could Be Making Cancer Treatments Less Effective

Sucralose may weaken immunotherapy by altering gut microbes and starving immune cells

AI Designs Computer Chips We Can't Understand — But They Work Really Well

Can we trust systems we don’t fully understand?

Strength Training Unlocks Anti-Aging Molecules in Your Muscles

Here’s how resistance training can trigger your body’s built-in anti-aging switch.

"Self-termination is most likely." This expert believes our civilization is on a crash course led by narcissistic leaders

Our civilization may be facing a “single gargantuan crash,” but collapse isn’t destiny. It’s a choice.

New DNA Evidence Reveals What Actually Killed Napoleon’s Grand Army in 1812

Napoleon's army was the largest Europe had ever seen, but in just a few months it was obliterated.

Breathing This Common Air Pollution May Raise Your Dementia Risk by 17 Percent

Long-term exposure to common air pollutants like soot and traffic fumes may significantly raise your risk of dementia.