homehome Home chatchat Notifications


Copper-coated uniforms for medical staff could help shred bacteria in hospitals

It's a pretty metal solution.

Alexandru Micu
February 16, 2018 @ 5:46 pm

share Share

Healthcare professionals might soon be bringing on the bling in the workplace, as UK and Chinese researchers designed copper-covered uniforms to help fight bacteria.

Copper.

Image via PxHere.

Materials scientists from the University of Manchester, working with counterparts from several universities in China, have created a ‘durable and washable, concrete-like’ material made from copper nanoparticles. They’ve also developed a method of bringing this composite to textiles such as cotton or polyester, a world first.

Coppering out

Bacterial infections are a major health issue in hospitals across the world. These tiny prokaryotes spread throughout healthcare facilities on surfaces and clothing, leading to losses both of life and of funds. The issue becomes worse still after you factor in the rise of drug resistance in most strains, which is rendering our once-almighty antibiotics more and more powerless. So we need to look for alternative ways of dealing with them, ones that do not rely on antibiotics.

One increasingly promising set of tools in our fight against disease are precious metals, such as gold and silver, which have excellent antibacterial and antimicrobial properties. However, deploying these on the surfaces and clothing mentioned earlier runs into some pretty obvious problems: first, gold and silver are really expensive — after all, they literally used to be money. Secondly, they don’t lend that well to making practical clothes, especially in a hospital setting.

Enter copper. Less expensive than gold or silver, copper is nevertheless still very good at killing pathogens, which solves problem one. However, up to now, we still didn’t have an adequate answer to issue number two — which is what the team addresses in this paper.

Using a process dubbed ‘Polymer Surface Grafting’, the researchers were successful in tying copper nanoparticles to cotton or polyester using a polymer brush. Cotton and polyester were chosen as a test bed as they’re the most widely used natural fiber and a typical man-made synthetic fabric, respectively.

The materials were brushed over with copper nanoparticles measuring between 1 and 100 nm, which is really small — one nm equals one-millionth of a mm. The metal particles formed a strong, stable chemical bond with the cloth, meaning the metal won’t flake off or be washed away.

“Now that our composite materials present excellent antibacterial properties and durability, it has huge potential for modern medical and healthcare applications,” says lead author Dr Xuqing Liu, from UoM’s School of Materials.

During lab tests, the copper-coated materials easily killed Staphylococcus aureus (S. aureus) and E. coli, two of the most common and infectious bacteria in hospitals, even after being washed 30 times.

The team says their results are very promising, and Dr. Liu adds that “some companies are already showing interest” in developing it further.

“We hope we can commercialise the advanced technology within a couple of years,” he adds. “We have now started to work on reducing cost and making the process even simpler.”

The paper “Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials” has been published in the Journal of Nanomaterials.

share Share

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.